优化器的使用

代码示例:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 加载数据集转化为Tensor数据类型
dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor()
                                       , download=True)
# 使用dataloader加载数据集
dataloader = DataLoader(dataset, batch_size=1)


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),  # 将数据进行展平 64*4*4 =1024
            Linear(in_features=1024, out_features=64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
kun = Kun()

# 设置优化器
optim = torch.optim.SGD(kun.parameters(), lr=0.01)
# 相当于一轮学习
    for data in dataloader:
        imgs, target = data
        outputs = kun(imgs)
        result = loss(outputs, target)

        optim.zero_grad()  # 将所有参数梯度调整为0
        result.backward()  # 调用损失函数的反向传播求出每个梯度
        optim.step()  # 循环调优

增加训练次数:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 加载数据集转化为Tensor数据类型
dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor()
                                       , download=True)
# 使用dataloader加载数据集
dataloader = DataLoader(dataset, batch_size=1)


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),  # 将数据进行展平 64*4*4 =1024
            Linear(in_features=1024, out_features=64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
kun = Kun()

# 设置优化器
optim = torch.optim.SGD(kun.parameters(), lr=0.01)
for epoch in range(20):
    running_loss = 0.0      # 记录每轮学习损失的总和
    # 相当于一轮学习
    for data in dataloader:
        imgs, target = data
        outputs = kun(imgs)
        result = loss(outputs, target)

        optim.zero_grad()  # 将所有参数梯度调整为0
        result.backward()  # 调用损失函数的反向传播求出每个梯度
        optim.step()  # 循环调优
        running_loss += result
    print(running_loss)

结果示例:每轮的损失参数不断减小

造成损失参数不降反升,是lr设置过大

调整lr=0.001

python 复制代码
optim = torch.optim.SGD(kun.parameters(), lr=0.001)

结果:

相关推荐
thinkMoreAndDoMore10 分钟前
深度学习(3)-TensorFlow入门(常数张量和变量)
开发语言·人工智能·python
神舟之光12 分钟前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
kngines18 分钟前
【Python量化金融实战】-第1章:Python量化金融概述:1.4 开发环境搭建:Jupyter Notebook、VS Code、PyCharm
python·量化金融
kngines22 分钟前
【Python量化金融实战】-第1章:Python量化金融概述:1.2 Python在量化金融中的优势与生态
python·量化金融
wapicn9924 分钟前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
蓝桉8021 小时前
图片爬取案例
开发语言·数据库·python
wang_yb1 小时前
『Python底层原理』--Python整数为什么可以无限大
python·databook
日记成书1 小时前
详细介绍嵌入式硬件设计
嵌入式硬件·深度学习·学习
thinkMoreAndDoMore1 小时前
深度学习(3)-TensorFlow入门(梯度带)
人工智能·深度学习·tensorflow
敲上瘾1 小时前
基础dp——动态规划
java·数据结构·c++·python·算法·线性回归·动态规划