《动手学深度学习 Pytorch版》 7.2 使用块的网络(VGG)

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

7.2.1 VGG 块

AlexNet 没有提供一个通用的模板来指导后续的研究人员设计新的网络,如今研究人员转向了块的角度思考问题。通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。

经典的卷积神经网络的基本组成部分如下:

复制代码
- 带填充以保持分辨率的卷积层

- 非线性激活层

- 汇聚层

VGG 块与之类似,由一系列卷积层组成,再加上用于空间降采样的汇聚层。

python 复制代码
def vgg_block(num_convs, in_channels, out_channels):  # 卷积核数量,输入通道数,输出通道数
    layers = []
    for _ in range(num_convs):  # 加入卷积层
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))  # 加入池化层
    return nn.Sequential(*layers)

为什么 VGG 块选择堆 3 × 3 3\times 3 3×3 而不是 5 × 5 5\times 5 5×5?

主要是因为在同样的算力下,堆层数多但是核小的 3 × 3 3\times 3 3×3 要比堆核大但是层数少的 5 × 5 5\times 5 5×5 效果要好。简言之,卷积层深度的影响要大于卷积核大小的影响。

7.2.2 VGG 网络

VGG 网络可以分为两部分:

复制代码
- 第一部分由卷积层和汇聚层构成

- 第二部分由全连接层组成
python 复制代码
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)
python 复制代码
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)
复制代码
Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

7.2.3 训练模型

python 复制代码
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]  # 构建一个通道较少的模型以减少运算量
net = vgg(small_conv_arch)
python 复制代码
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要三十五分钟,慎跑
复制代码
loss 0.188, train acc 0.929, test acc 0.908
327.1 examples/sec on cuda:0

练习

(1)打印层的尺寸时,我们只看到 8 个结果,而不是 11 个结果。剩余的 3 层信息去哪了?

因为 3 到 8 层是以两两一组的块的形式显示的。


(2)与 AlexNet 相比,VGG 的计算要慢得多,而且还需要更多的显存。分析出现这种情况的原因。

层数更多,提取的特征也多。


(3)尝试将Fashion-MNIST数据集图像的高度和宽度从224改为96。这对实验有什么影响?

python 复制代码
conv_arch96 = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

def vgg96(conv_arch):
    conv_blks = []
    in_channels = 1
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        nn.Linear(out_channels * 3 * 3, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch96]
net96 = vgg96(small_conv_arch)

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter96, test_iter96 = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net96, train_iter96, test_iter96, num_epochs, lr, d2l.try_gpu())  # 快多了
复制代码
loss 0.218, train acc 0.919, test acc 0.904
1496.5 examples/sec on cuda:0

训练速度大幅加快,模型精度略有损失。


(4)请参考VGG论文 (Simonyan and Zisserman, 2014)中的表1构建其他常见模型,如VGG-16或VGG-19。

跑不了一点,累了,略。

相关推荐
ZVAyIVqt0UFji3 分钟前
360 OpenStack支持IP SAN存储实现
网络·网络协议·tcp/ip·openstack
谦行1 小时前
工欲善其事,必先利其器—— PyTorch 深度学习基础操作
pytorch·深度学习·ai编程
三思而后行,慎承诺1 小时前
tcp 和http 网络知识
网络·tcp/ip·http
JavaEdge.1 小时前
LangChain4j HTTP 客户端定制:解锁 LLM API 交互的更多可能性
网络·网络协议·http
Hy行者勇哥1 小时前
形象解释 HTTP 的四种常见请求方式及其中的区别联系
网络·网络协议·http
xwz小王子1 小时前
Nature Communications 面向形状可编程磁性软材料的数据驱动设计方法—基于随机设计探索与神经网络的协同优化框架
深度学习
Cuit小唐2 小时前
TCP 协议:原理、机制与应用
网络·网络协议·tcp/ip
电鱼智能的电小鱼2 小时前
EFISH-SBC-RK3588无人机地面基准站项目
linux·网络·嵌入式硬件·机器人·无人机·边缘计算
电鱼智能的电小鱼2 小时前
基于 EFISH-SBC-RK3588 的无人机环境感知与数据采集方案
linux·网络·嵌入式硬件·数码相机·无人机·边缘计算
生信碱移2 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化