神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
轻闲一号机5 小时前
【机器学习】机器学习笔记
人工智能·笔记·机器学习
Hali_Botebie7 小时前
【端到端】端到端自动驾驶依赖Occupancy进行运动规划?还是可以具有生成局部地图来规划?
人工智能·机器学习·自动驾驶
workworkwork勤劳又勇敢8 小时前
Adversarial Attack对抗攻击--李宏毅机器学习笔记
人工智能·笔记·深度学习·机器学习
乌旭8 小时前
从Ampere到Hopper:GPU架构演进对AI模型训练的颠覆性影响
人工智能·pytorch·分布式·深度学习·机器学习·ai·gpu算力
zy_destiny11 小时前
【非机动车检测】用YOLOv8实现非机动车及驾驶人佩戴安全帽检测
人工智能·python·算法·yolo·机器学习·安全帽·非机动车
AI糊涂是福12 小时前
数字政府与智慧城市区别报告分析
大数据·人工智能·机器学习·架构·智慧城市
大神薯条老师14 小时前
Python高级爬虫之JS逆向+安卓逆向1.4节:数据运算
爬虫·python·机器学习·数据分析·网络爬虫
潇湘馆记14 小时前
集成学习介绍
机器学习·集成学习
蹦蹦跳跳真可爱58916 小时前
Python----机器学习(基于PyTorch的垃圾邮件逻辑回归)
人工智能·pytorch·python·机器学习·逻辑回归
奋斗者1号17 小时前
机器学习中的分类算法与数据处理实践:从理论到应用
人工智能·机器学习·分类