神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
初九之潜龙勿用9 小时前
在openEuler操作系统基础上实现机器学习开发以及openEuler优势分析
人工智能·机器学习
dhdjjsjs10 小时前
Day31 PythonStudy
人工智能·机器学习
我不是小upper10 小时前
CNN+BiLSTM !!最强序列建模组合!!!
人工智能·python·深度学习·神经网络·cnn
Jay200211111 小时前
【机器学习】30 基于内容的过滤算法
人工智能·算法·机器学习
极客BIM工作室11 小时前
ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程
人工智能·机器学习
weixin_贾11 小时前
当机器学习遇上生态学:BIOMOD2案例详解物种分布模拟与未来气候情景预测
随机森林·机器学习·支持向量机·物种分布
双翌视觉11 小时前
服务器电源外观检测智能化机器视觉解决方案
运维·服务器·人工智能·机器学习
byzh_rc12 小时前
[认知计算] 循环神经网络
人工智能·python·rnn·深度学习·神经网络·机器学习
黑客思维者12 小时前
Python 机器学习TensorFlow 2.x 入门实战:CNN/RNN/Transformer
python·机器学习·tensorflow
xixixi7777712 小时前
NTN(神经张量网络):让AI学会“关系推理”的里程碑
网络·人工智能·神经网络·ai·大模型·ntn