神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
Start_Present7 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
云和数据.ChenGuang9 小时前
机器学习之回归算法
人工智能·机器学习·回归
代码骑士9 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
橙色小博10 小时前
长短期记忆神经网络(LSTM)基础学习与实例:预测序列的未来
人工智能·python·深度学习·神经网络·lstm
深蓝学院10 小时前
闭环SOTA!北航DiffAD:基于扩散模型实现端到端自动驾驶「多任务闭环统一」
人工智能·机器学习·自动驾驶
仙人掌_lz10 小时前
机器学习ML极简指南
人工智能·python·算法·机器学习·面试·强化学习
zy_destiny12 小时前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪