神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
AI科技星1 分钟前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
xiao5kou4chang6kai418 分钟前
面向自然科学领域机器学习与深度学习(高维数据预处理—可解释ML/DL—时空建模—不确定性量化-全程AI+Python)
人工智能·深度学习·机器学习·不确定性量化·时空建模·高维数据预处理·可解释ml/dl
光羽隹衡32 分钟前
机器学习——DBSCAN算法
人工智能·算法·机器学习
sonadorje35 分钟前
机器学习中的逻辑回归
人工智能·机器学习·逻辑回归
渡我白衣37 分钟前
计算机组成原理(14):算术逻辑单元ALU
大数据·人工智能·算法·机器学习·计组·数电·alu
深度之眼42 分钟前
机器学习可解释性的研究进展!
深度学习·机器学习·可解释性
源于花海1 小时前
迁移学习的第一类方法:数据分布自适应(3)——联合分布自适应
人工智能·机器学习·迁移学习·联合分布自适应
武子康1 小时前
大数据-208 岭回归与Lasso回归:区别、应用与选择指南
大数据·后端·机器学习
hoiii1871 小时前
基于混合神经网络(CNN-LSTM)的电能扰动信号特征识别MATLAB实现
神经网络·cnn·lstm
RockHopper20251 小时前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知