神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
机器觉醒时代2 分钟前
“干活”机器人“教练”登场:宇树机器人推出首款轮式机器人G1-D
人工智能·机器学习·机器人·人形机器人
m0_635129261 小时前
身智能-一文详解视觉-语言-动作(VLA)大模型(3)
人工智能·机器学习
pen-ai2 小时前
【高级机器学习】 12. 强化学习,Q-learning, DQN
人工智能·机器学习
码上地球5 小时前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
北邮刘老师8 小时前
智能家居,需要的是“主控智能体”而不是“主控节点”
人工智能·算法·机器学习·智能体·智能体互联网
Blossom.1188 小时前
大模型量化压缩实战:从FP16到INT4的生产级精度保持之路
开发语言·人工智能·python·深度学习·神经网络·目标检测·机器学习
K2_BPM9 小时前
打通 AI 与业务的 “最后一公里”:流程优化的底层逻辑与三种战略选择
人工智能·机器学习
Ro Jace9 小时前
三国华容道(横刀立马)移动策略
android·java·数据库·人工智能·深度学习·神经网络·游戏
Blossom.11810 小时前
大模型知识蒸馏实战:从Qwen-72B到Qwen-7B的压缩艺术
大数据·人工智能·python·深度学习·算法·机器学习·pygame
StarPrayers.15 小时前
K-means 聚类
机器学习·kmeans·聚类