神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
可触的未来,发芽的智生1 小时前
发现:认知的普适节律 发现思维的8次迭代量子
javascript·python·神经网络·程序人生·自然语言处理
zy_destiny2 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
(; ̄ェ ̄)。2 小时前
机器学习入门(十八)特征降维
人工智能·机器学习
薛不痒2 小时前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
m0_603888713 小时前
Toward Cognitive Supersensing in Multimodal Large Language Model
人工智能·机器学习·ai·语言模型·论文速览
GIS数据转换器3 小时前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物
爱吃rabbit的mq3 小时前
第2章 机器学习的核心概念(上)
人工智能·机器学习
爱吃泡芙的小白白4 小时前
机器学习输入层:从基础到前沿,解锁模型性能第一关
人工智能·机器学习
小鸡吃米…5 小时前
机器学习 - 堆叠集成(Stacking)
人工智能·python·机器学习
郝学胜-神的一滴5 小时前
基于30年教学沉淀的清华大学AI通识经典:《人工智能的底层逻辑》
人工智能·程序人生·机器学习·scikit-learn·sklearn