神经网络小记-混淆矩阵

混淆矩阵(Confusion Matrix)是在机器学习和统计学中用于评估分类模型性能的一种常用工具。它以表格的形式显示了模型的预测结果与实际真值之间的关系,特别适用于二元分类问题。混淆矩阵通常包含以下四个重要的指标:

假设我们有一个二元分类问题,其中:

  • 正类别(Positive Class):表示我们关注的目标类别,通常用"1"表示。
  • 负类别(Negative Class):表示不是目标类别的类别,通常用"0"表示。

混淆矩阵的四个指标如下:

  1. 真正例(True Positives,TP):模型正确地将正类别样本分类为正类别的数量。

  2. 真负例(True Negatives,TN):模型正确地将负类别样本分类为负类别的数量。

  3. 假正例(False Positives,FP):模型错误地将负类别样本分类为正类别的数量(误报)。

  4. 假负例(False Negatives,FN):模型错误地将正类别样本分类为负类别的数量(漏报)。

混淆矩阵通常以如下形式呈现:

复制代码
                  预测正例     预测负例
实际正例(真正例)    TP          FN
实际负例(真负例)    FP          TN

基于混淆矩阵,可以计算出多个分类性能指标,如准确率、召回率、精确度、F1分数等,这些指标有助于评估模型的性能和效果。

  • 准确率(Accuracy) :分类正确的样本数占总样本数的比例,即 (TP + TN) / (TP + TN + FP + FN)

  • 召回率(Recall) :正类别样本被正确分类为正类别的比例,即 TP / (TP + FN)

  • 精确度(Precision) :被分类为正类别的样本中,真正为正类别的比例,即 TP / (TP + FP)

  • F1分数(F1 Score) :综合考虑了准确率和召回率,是一个平衡的度量指标,即 2 * (Precision * Recall) / (Precision + Recall)

混淆矩阵是评估二元分类模型性能的重要工具,它能够清晰地展示模型的分类情况,帮助分析模型的优点和不足,进而改进模型的性能。

相关推荐
十六年开源服务商34 分钟前
WordPress集成GoogleAnalytics最佳实践指南
前端·人工智能·机器学习
咚咚王者1 小时前
人工智能之核心基础 机器学习 第十四章 半监督与自监督学习总结归纳
人工智能·学习·机器学习
智算菩萨2 小时前
2026最新视频压缩技术全景概述:AV2临近定稿、VVC加速落地、神经网络编码正在改写带宽成本
人工智能·深度学习·神经网络
Sherry Wangs2 小时前
【ML】机器学习基础
人工智能·机器学习
专注VB编程开发20年2 小时前
MQTT傻瓜化调用组件,零成本学习.NET开发,上位机开发
学习·机器学习·.net
computersciencer2 小时前
用最小二乘法求解多元一次方程模型的参数
人工智能·机器学习·最小二乘法
武子康2 小时前
大数据-214 K-Means 聚类实战:自写算法验证 + sklearn KMeans 参数/labels_/fit_predict 速通
大数据·后端·机器学习
LDG_AGI3 小时前
【机器学习】深度学习推荐系统(二十六):X 推荐算法多模型融合机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法
工业甲酰苯胺3 小时前
推荐算法闲谈:如何在不同业务场景下理解和拆解核心指标
算法·机器学习·推荐算法
haing20193 小时前
卡尔曼滤波(Kalman Filter)原理
线性代数·算法·机器学习