论文精读GAN: Generative Adversarial Nets

  • [1 基础背景](#1 基础背景)
  • [2 优缺点](#2 优缺点)
  • [3 未来发展趋势](#3 未来发展趋势)

1 基础背景

论文链接:https://arxiv.org/abs/1406.2661

源码地址:http://www.github.com/goodfeli/adversarial

2 优缺点

优点:

避免了过拟合。因为生成器没有直接接触样本,而是通过判别器告诉它像不像,就像枯叶蝶不知道枯叶长什么样子;

不需要Markov链。而是采用的深度学习,深度学习中有完备的训练技巧。

缺点:

无法显式地表示样本分布。就像枯叶蝶不知道自己为什么像枯叶;

判别器和生成器需要同步训练。如果训练太多次判别器再训练生成器,那么可能导致【模式崩溃】(不管给什么噪声,输出结果一样)

3 未来发展趋势

条件GAN:指定生成什么类型的图片,比如固定数字、某种小动物等;

图像编辑:比如修改头发颜色;

图像填充:把图像中的路人用风景填充。

相关推荐
Learn Beyond Limits22 分钟前
Transfer Learning|迁移学习
人工智能·python·深度学习·神经网络·机器学习·ai·吴恩达
程序员三明治23 分钟前
三、神经网络
人工智能·深度学习·神经网络
hundaxxx2 小时前
自演化大语言模型的技术背景
人工智能
数智顾问2 小时前
【73页PPT】美的简单高效的管理逻辑(附下载方式)
大数据·人工智能·产品运营
love530love2 小时前
【保姆级教程】阿里 Wan2.1-T2V-14B 模型本地部署全流程:从环境配置到视频生成(附避坑指南)
人工智能·windows·python·开源·大模型·github·音视频
木头左2 小时前
结合机器学习的Backtrader跨市场交易策略研究
人工智能·机器学习·kotlin
Coovally AI模型快速验证2 小时前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d
研梦非凡2 小时前
CVPR 2025|基于粗略边界框监督的3D实例分割
人工智能·计算机网络·计算机视觉·3d
MiaoChuAI2 小时前
秒出PPT vs 豆包AI PPT:实测哪款更好用?
人工智能·powerpoint
fsnine3 小时前
深度学习——残差神经网路
人工智能·深度学习