GAN里面什么时候用detach的说明

在生成对抗网络(GAN)中,生成器(G)和判别器(D)通常是两个独立的神经网络,它们之间会有梯度传播的互动。下面是一个简单的GAN的PyTorch实现,用于生成一维数据,以展示何时应该使用detach()。

复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# 生成器
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(10, 50),
            nn.ReLU(),
            nn.Linear(50, 1)
        )
    
    def forward(self, x):
        return self.model(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(1, 50),
            nn.ReLU(),
            nn.Linear(50, 1),
            nn.Sigmoid()
        )
    
    def forward(self, x):
        return self.model(x)

# 实例化生成器和判别器
G = Generator()
D = Discriminator()

# 定义优化器和损失函数
optimizer_G = optim.Adam(G.parameters(), lr=0.001)
optimizer_D = optim.Adam(D.parameters(), lr=0.001)
loss_func = nn.BCELoss()

# 训练循环
for epoch in range(1000):
    # 训练判别器
    D.zero_grad()
    real_data = torch.randn(100, 1)  # 真实数据
    real_labels = torch.ones(100, 1) # 真实标签
    fake_data = G(torch.randn(100, 10)).detach() # 使用detach(), 因为我们不想在这一步更新生成器
    fake_labels = torch.zeros(100, 1) # 假的标签

    real_loss = loss_func(D(real_data), real_labels)
	# real_loss = loss_func(D(real_data.detach), real_labels)
    fake_loss = loss_func(D(fake_data), fake_labels)
    d_loss = real_loss + fake_loss
    d_loss.backward()
    optimizer_D.step()

    # 训练生成器
    G.zero_grad()
    noise_data = torch.randn(100, 10) # 噪声数据
    fake_data = G(noise_data) # 没有使用detach(), 因为我们想在这一步更新生成器
    g_loss = loss_func(D(fake_data), torch.ones(100, 1))
    g_loss.backward()
    optimizer_G.step()

在这个例子中:

  1. 当训练判别器(D)时,我们使用了detach()来中断梯度传播到生成器(G)。这是因为在这一步中,我们仅关心优化判别器,而不希望更新生成器的参数。
  2. 当训练生成器(G)时,我们没有使用detach(),因为我们需要通过反向传播的梯度来更新生成器的参数。

注意:在训练判别器时,不使用real_loss = loss_func(D(real_data.detach), real_labels), 也就是这里不需要对real_data进行detach操作。

而且即使对real_data进行.detach()操作实际上应该不会有明显影响,原因在于real_data并不是通过模型参数生成的,也不是一个需要优化的变量。.detach()方法主要用于将一个张量从当前计算图中分离出来,阻止反向传播过程中对其计算梯度。但在本例中,real_data本身就没有与需要优化的模型参数有直接关系,也不是由其他需要优化的变量通过一些运算得到的。

注意: 在训练判别器时,使用fake_data = G(torch.randn(100, 10)).detach(), 注意是因为这个fake_data是由生成器G生成的, 为了保证分开训练判别器和生成器,即在训练判别器的时候,不对生成器的参数进行更新,这里就要把G生成的数据进行detach操作

在训练生成器时, 也用到了判别器,用判别器去判别生成器生成的内容,希望判别器能把G生成的内容当做真的,这样就说明G的生成的内容可以以假乱真

复制代码
fake_data = G(noise_data) # 没有使用detach(), 因为我们想在这一步更新生成器
g_loss = loss_func(D(fake_data), torch.ones(100, 1))
g_loss.backward()
optimizer_G.step()

上面没有对传进D的fake_data进行detach,是因为下面的代码只有g_loss_backward(),也就是只对G进行参数更新,当然这里也不能对fake_data进行detach,如果detach了,就无法更新G的参数了

相关推荐
后端小肥肠4 分钟前
小佛陀漫画怎么做?深扒中老年高互动赛道,用n8n流水线批量打造
人工智能·aigc·agent
是店小二呀4 分钟前
本地绘图工具也能远程协作?Excalidraw+cpolar解决团队跨网画图难题
人工智能
i爱校对22 分钟前
爱校对团队服务全新升级
人工智能
KL1328815269328 分钟前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel199030 分钟前
人工智能的7大应用领域
人工智能
哥布林学者30 分钟前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(二)数据集设置
深度学习·ai
人工智能训练1 小时前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器
南蓝1 小时前
【AI 日记】调用大模型的时候如何按照 sse 格式输出
前端·人工智能
robot_learner1 小时前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia1 小时前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae