矩阵求导数

矩阵 A = ∣ 1 2 1 2 − 1 3 ∣ , 计算 f ( x ) = ∣ ∣ A x ∣ ∣ 2 ∣ ∣ x ∣ ∣ 2 的最大值。 矩阵A = \begin {vmatrix} 1 & 2 & 1\\2 & -1 & 3 \end {vmatrix},计算f(x) = \frac{||Ax||_2}{||x||_2}的最大值。 矩阵A= 122−113 ,计算f(x)=∣∣x∣∣2∣∣Ax∣∣2的最大值。

解:

根据导数定义和性质,极值处导数为0。首先求出矩阵的导数,置为0后求解。

首先 f ( x ) = ∣ x 1 x 2 x 3 ∣ ∣ 1 2 2 − 1 1 3 ∣ ∣ 1 2 1 2 − 1 3 ∣ ∣ x 1 x 2 x 3 ∣ x 1 2 + x 2 2 + x 3 2 = ∣ x 1 x 2 x 3 ∣ ∣ 5 0 7 0 5 − 1 7 − 1 10 ∣ ∣ x 1 x 2 x 3 ∣ x 1 2 + x 2 2 + x 3 2 f(x) = \frac{ \begin {vmatrix} x_1 x_2 x_3 \end {vmatrix} \begin {vmatrix} 1 & 2 \\2 & -1 \\1 & 3 \end {vmatrix}\begin {vmatrix} 1 & 2 & 1\\2 & -1 & 3 \end {vmatrix} \begin {vmatrix} x_1\\ x_2\\x_3 \end {vmatrix} }{x_1^2 + x_2^2 + x_3^2} =\\ \frac{ \begin {vmatrix} x_1 x_2 x_3 \end {vmatrix} \begin {vmatrix} 5 & 0 & 7\\0 & 5 & -1 \\7 & -1 & 10\end {vmatrix} \begin {vmatrix} x_1\\ x_2\\x_3 \end {vmatrix} }{x_1^2 + x_2^2 + x_3^2} f(x)=x12+x22+x32 x1x2x3 1212−13 122−113 x1x2x3 =x12+x22+x32 x1x2x3 50705−17−110 x1x2x3

考虑矩阵 x T A T A x x^T A ^ T A x xTATAx求导:

( x + Δ x ) T A T A ( x + Δ x ) = ( x T + Δ x T ) A T A ( x + Δ x ) = ( x T A T A + Δ x T A T A ) ( x + Δ x ) = x T A T A x + x T A T A Δ x + Δ x T A T A x + Δ x T A T A Δ x (x + \Delta x)^T A ^ T A (x + \Delta x) =(x^T + \Delta x ^ T) A ^ T A (x + \Delta x) =\\ (x^T A ^ T A + \Delta x ^ T A ^ T A ) (x + \Delta x) = \\ x^T A ^ T A x +x^T A ^ T A \Delta x + \Delta x ^ T A ^ T A x + \Delta x ^ T A ^ T A \Delta x (x+Δx)TATA(x+Δx)=(xT+ΔxT)ATA(x+Δx)=(xTATA+ΔxTATA)(x+Δx)=xTATAx+xTATAΔx+ΔxTATAx+ΔxTATAΔx

注意:上式中每一项都是一个标量,而不是向量。 \color{red}注意:上式中每一项都是一个标量,而不是向量。 注意:上式中每一项都是一个标量,而不是向量。

∣ ∣ ( x + Δ x ) T A T A ( x + Δ x ) − x T A T A x ∣ ∣ ∣ ∣ Δ x ∣ ∣ = ∣ ∣ x T A T A Δ x + Δ x T A T A x + Δ x T A T A Δ x ∣ ∣ ∣ ∣ Δ x ∣ ∣ = 2 A T A x \frac { ||(x + \Delta x)^T A ^ T A (x + \Delta x) -x^T A ^ T A x ||}{ || \Delta x||} = \\ \frac {||x^T A ^ T A \Delta x + \Delta x ^ T A ^ T A x + \Delta x ^ T A ^ T A \Delta x ||}{ ||\Delta x ||} = 2 A^ TA x ∣∣Δx∣∣∣∣(x+Δx)TATA(x+Δx)−xTATAx∣∣=∣∣Δx∣∣∣∣xTATAΔx+ΔxTATAx+ΔxTATAΔx∣∣=2ATAx

注意:上式取 2 A T A x 而不是 x T A T A 的原因是, Δ x 一般是列向量,需要放在后面,此时需要将矩阵导数放在前面,并转置。 \color{red}注意:上式取2 A^ TA x而不是x^ TA ^T A的原因是,\\ \Delta x一般是列向量,需要放在后面,此时需要将矩阵导数放在前面,并转置。 注意:上式取2ATAx而不是xTATA的原因是,Δx一般是列向量,需要放在后面,此时需要将矩阵导数放在前面,并转置。

现在将导数置为0并求解方程组:

2 A T A x = 0 2 A^ TA x = 0 2ATAx=0 得:

此方法对吗 ? \color{red}此方法对吗? 此方法对吗?

相关推荐
在路上看风景3 小时前
2.2 列空间和零空间
线性代数
前端小L8 小时前
图论专题(十九):DAG上的“关键路径”——极限规划「并行课程 III」
算法·矩阵·深度优先·图论·宽度优先
艾莉丝努力练剑9 小时前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
Beginner x_u9 小时前
线性代数 必背公式总结&&线代计算技巧总结_分块矩阵大总结_秩一矩阵大总结
线性代数·矩阵·特征值·特征向量·计算技巧
没书读了9 小时前
计算机组成原理-考前记忆清单
线性代数·算法
Hcoco_me10 小时前
大模型面试题5:矩阵(M*M)特征值分解的步骤
算法·机器学习·矩阵
oscar99910 小时前
高等数学第四章 向量代数与空间解析几何
线性代数·矩阵
前端小L14 小时前
图论专题(二十五):最小生成树(MST)——用最少的钱,连通整个世界「连接所有点的最小费用」
算法·矩阵·深度优先·图论·宽度优先
前端小L1 天前
图论专题(二十二):并查集的“逻辑审判”——判断「等式方程的可满足性」
算法·矩阵·深度优先·图论·宽度优先
平凡灵感码头1 天前
经典按键扫描程序算法实现方式
单片机·矩阵·计算机外设