记录TritonServer部署多模型到多GPU踩坑 | 京东云技术团队

一、问题是怎么发现的

部署chatglm2和llama2到一个4*V100的GPU机器上遇到问题

config.pbtxt

中设置模型分别在指定gpu上部署实例配置不生效

如以下配置为在gpu0上部署本模型,部署count=1个实例,在gpu1上部署本模型,部署count=2个实例

instance_group [ { count: 1 kind: KIND_GPU gpus: [ 0 ] },

{ count: 2

kind: KIND_GPU

gpus: [ 1 ] } ]

部署时发现,所有模型实例都会被部署到gpu0上面, 由于gpu只有16g显存,在部署第一个模型实例成功后,第二个模型实例也会往gpu0上进行加载,最终导致cuda out of memery.

网上搜索发现有人遇到同样的问题,链接: github.com/triton-infe...

二、问题带来的影响

三、排查问题的详细过程

大佬回答解决方案:

四、如何解决问题

1.在model.py手动获取config.pbtxt配置的gpu编号gpus:[0]

instance_group [

{

count: 1

kind: KIND_GPU

gpus: [ 0 ]

}

]

2.设置可用的GPU编号

os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)

3.启动成功

五、总结反思:是否可以更快发现问题?如何再次避免等。

triton启动的使用使用 nvidia-smi -l 2 监控显卡想显存, 可以发现所有模型都在往第一个gpu,gpu[0]内加载,发现配置config.pbtxt不生效

作者:京东科技 杨建

来源:京东云开发者社区 转载请注明来源

相关推荐
杰克逊的日记34 分钟前
用deepseek对GPU服务器进行压力测试
压力测试·gpu
智泊AI2 小时前
Transformer 的训练过程是什么样子的?一文讲清:Transformer 的结构及训练过程
llm
聚客AI4 小时前
⚠️Embedding选型指南:五步搞定数据规模、延迟与精度平衡!
人工智能·llm·掘金·日新计划
百度Geek说5 小时前
大模型评测实践与思考
llm
深度学习机器5 小时前
Embedding Gemma,谷歌发布的小而精向量模型,仅需0.3B|附RAG实战代码
google·llm·openai
mortimer8 小时前
一次 ModelScope 替代 Hugging Face 的模型下载实战指南
人工智能·llm
Baihai_IDP10 小时前
2025 年大语言模型架构演进:DeepSeek V3、OLMo 2、Gemma 3 与 Mistral 3.1 核心技术剖析
人工智能·llm·aigc
陈敬雷-充电了么-CEO兼CTO10 小时前
视频理解新纪元!VideoChat双模架构突破视频对话瓶颈,开启多模态交互智能时代
人工智能·chatgpt·大模型·多模态·世界模型·kimi·deepseek
AI大模型1 天前
无所不能的Embedding(06) - 跨入Transformer时代~模型详解&代码实现
程序员·llm·agent
大千AI助手1 天前
灾难性遗忘:神经网络持续学习的核心挑战与解决方案
人工智能·深度学习·神经网络·大模型·llm·持续学习·灾难性遗忘