Pytorch基础:Tensor的reshape方法

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


在Pytorch中,reshape是Tensor的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是连续的。

reshape方法的语法如下所示:

Tensor.reshape(*shape) → Tensor
shape (tuple of ints or int...) - the desired shape

reshape的用法如下所示:

import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为2行6列的形状
y = x.reshape(2, 6) 
y = x.reshape((2,6)) #两种形式均可,y = x.reshape([2,6])也可
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851,  1.1321,  0.3153],
        [ 0.3485,  0.7977, -0.5279,  0.2062, -0.4224, -0.3993]])

可以看到,给出的参数既可以是多个整数(其中每个整数代表一个维度的大小,而整数的数量代表维度的数量),也可以是一个元组或是列表(其中每个元素代表一个维度的大小,而元素数量代表维度的数量)。而且reshape不改变Tensor中数据的排列顺序(指的是从上到下从左到右遍历的顺序),只改变形状,这也就对reshape各维度大小的乘积有要求,要与原Tensor一致。在上例中即3*4=2*6。

另外reshape还有一个trick,即某一维的实参可以是-1,此时会自动根据原Tensor大小和给出的其他维度参数的大小,推断出这一维度的大小,举例如下:

import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为6行n列的形状,n为自动推断出的值
y = x.reshape(6, -1)
tensor([[ 0.1961, -0.9038],
        [ 0.9196, -1.1851],
        [ 1.1321,  0.3153],
        [ 0.3485,  0.7977],
        [-0.5279,  0.2062],
        [-0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为(2,2,n)的形状,n为自动推断出的值
y = x.reshape(2, 2, -1)
tensor([[[ 0.1961, -0.9038,  0.9196],
         [-1.1851,  1.1321,  0.3153]],

        [[ 0.3485,  0.7977, -0.5279],
         [ 0.2062, -0.4224, -0.3993]]])

# 不能在两个维度都指定-1,这时无法推断出唯一结果
y = x.reshape(2, -1, -1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: only one dimension can be inferred

除此之外,还可以使用torch.reshape()函数,这与使用reshape方式效果一致,torch.reshape()的语法如下所示。

torch.reshape(input, shape) → Tensor
input (Tensor) -- the tensor to be reshaped
shape (tuple of python:int) -- the new shape


import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape函数将其重新塑造为6行n列的形状,n为自动推断出的值
y = torch.reshape(x, (6, -1))
tensor([[ 0.1961, -0.9038],
        [ 0.9196, -1.1851],
        [ 1.1321,  0.3153],
        [ 0.3485,  0.7977],
        [-0.5279,  0.2062],
        [-0.4224, -0.3993]])
相关推荐
_.Switch3 分钟前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
AI极客菌33 分钟前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭35 分钟前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^41 分钟前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
测开小菜鸟1 小时前
使用python向钉钉群聊发送消息
java·python·钉钉
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型