Pytorch基础:Tensor的reshape方法

相关阅读

Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


在Pytorch中,reshape是Tensor的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是连续的。

reshape方法的语法如下所示:

复制代码
Tensor.reshape(*shape) → Tensor
shape (tuple of ints or int...) - the desired shape

reshape的用法如下所示:

复制代码
import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为2行6列的形状
y = x.reshape(2, 6) 
y = x.reshape((2,6)) #两种形式均可,y = x.reshape([2,6])也可
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851,  1.1321,  0.3153],
        [ 0.3485,  0.7977, -0.5279,  0.2062, -0.4224, -0.3993]])

可以看到,给出的参数既可以是多个整数(其中每个整数代表一个维度的大小,而整数的数量代表维度的数量),也可以是一个元组或是列表(其中每个元素代表一个维度的大小,而元素数量代表维度的数量)。而且reshape不改变Tensor中数据的排列顺序(指的是从上到下从左到右遍历的顺序),只改变形状,这也就对reshape各维度大小的乘积有要求,要与原Tensor一致。在上例中即3*4=2*6。

另外reshape还有一个trick,即某一维的实参可以是-1,此时会自动根据原Tensor大小和给出的其他维度参数的大小,推断出这一维度的大小,举例如下:

复制代码
import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为6行n列的形状,n为自动推断出的值
y = x.reshape(6, -1)
tensor([[ 0.1961, -0.9038],
        [ 0.9196, -1.1851],
        [ 1.1321,  0.3153],
        [ 0.3485,  0.7977],
        [-0.5279,  0.2062],
        [-0.4224, -0.3993]])

# 使用reshape方法将其重新塑造为(2,2,n)的形状,n为自动推断出的值
y = x.reshape(2, 2, -1)
tensor([[[ 0.1961, -0.9038,  0.9196],
         [-1.1851,  1.1321,  0.3153]],

        [[ 0.3485,  0.7977, -0.5279],
         [ 0.2062, -0.4224, -0.3993]]])

# 不能在两个维度都指定-1,这时无法推断出唯一结果
y = x.reshape(2, -1, -1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: only one dimension can be inferred

除此之外,还可以使用torch.reshape()函数,这与使用reshape方式效果一致,torch.reshape()的语法如下所示。

复制代码
torch.reshape(input, shape) → Tensor
input (Tensor) -- the tensor to be reshaped
shape (tuple of python:int) -- the new shape


import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],
        [ 1.1321,  0.3153,  0.3485,  0.7977],
        [-0.5279,  0.2062, -0.4224, -0.3993]])

# 使用reshape函数将其重新塑造为6行n列的形状,n为自动推断出的值
y = torch.reshape(x, (6, -1))
tensor([[ 0.1961, -0.9038],
        [ 0.9196, -1.1851],
        [ 1.1321,  0.3153],
        [ 0.3485,  0.7977],
        [-0.5279,  0.2062],
        [-0.4224, -0.3993]])
相关推荐
___波子 Pro Max.9 分钟前
Python参数解析默认True变False
python
逐鹿人生15 分钟前
【人工智能工程师系列】一【全面Python3.8入门+进阶】ch.3
人工智能
橙露23 分钟前
面向对象编程思想:Java 与 Python 的封装、继承与多态对比分析
java·开发语言·python
Jia ming23 分钟前
《智能法官软件项目》—法条检索模块
python·教学·案例·智能法官软件
杨浦老苏27 分钟前
本地优先的AI个人助手Moltis
人工智能·docker·ai·群晖
OBS插件网33 分钟前
OBS直播如何给人脸加口罩特效?OBS口罩特效插件下载安装教程
人工智能·数码相机·语音识别·产品经理
LitchiCheng37 分钟前
Mujoco 如何添加 Apriltag 并获得相机视野进行识别
人工智能·python·开源
想用offer打牌1 小时前
一站式了解Agent Skills
人工智能·后端·ai编程
一切尽在,你来1 小时前
LangGraph快速入门
人工智能·python·langchain·ai编程
啊哈哈121381 小时前
Python基本语法复盘笔记1(输入输出/字符串/列表)
开发语言·笔记·python