GEE15:获取不同遥感指数的时间序列及不同指数间的关系

GEE

    • [1. 不同遥感指数间的时间序列分析](#1. 不同遥感指数间的时间序列分析)
    • [2. 不同指数之间的关系](#2. 不同指数之间的关系)

1. 不同遥感指数间的时间序列分析

GPP数据在一定程度上和植被指数(如NDVI和EVI)有着显著的相关性,那么其相关性如何?如何从时间序列的角度来思考呢?下面我将用GEE代码解答这个问题。

数据:

  • GPP MOD17A2H.006 Terra Gross Primary Productivity 8-Day Global 500m
  • NDVI & EVI MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250m
  • DEM Copernicus DEM GLO-30 Global 30m Digital Elevation Model
javascript 复制代码
// 不同数据源的时间序列分析(GPP,NDVI and EVI)
// 研究区设置
var ROI = ee.FeatureCollection('projects/ee-*******736/assets/Sichuan_province')
var styling = {color:"red",fillColor:"00000000"}
Map.centerObject(ROI,5)
Map.addLayer(ROI.style(styling),{},"geometry")

// 数据预处理
// 选择数据集并进行波段比例换算
var years = ee.List.sequence(2000, 2022);
var collectYear = ee.ImageCollection(years
  .map(function(y) {
    var start = ee.Date.fromYMD(y, 1, 1);
    var end = start.advance(12, 'month');
    var GPP = ee.ImageCollection('MODIS/006/MOD17A2H')
                  .select('Gpp')
                  .filterDate(start, end)
                  .map(function(image){
                    return image.multiply(0.001).set(image.toDictionary(image.propertyNames()));// 此处将GPP扩大了10倍
                  }).mean().rename('GPP')
    var NDVI = ee.ImageCollection("MODIS/006/MOD13Q1")
                  .filterDate(start, end)
                  .select("NDVI")
                  .map(function(image){
                    return image.multiply(0.0001).set(image.toDictionary(image.propertyNames()))
                  }).mean().rename('NDVI');
    var EVI = ee.ImageCollection("MODIS/006/MOD13Q1")
                  .filterDate(start, end)
                  .select("EVI")
                  .map(function(image){
                    return image.multiply(0.0001).set(image.toDictionary(image.propertyNames()))
                  }).mean().rename('EVI');
    return GPP.addBands(NDVI).addBands(EVI).set('year',y)
	}
  )
);
print (collectYear);


// 计算研究区域内的波段时间序列
var Yearlychart = ui.Chart.image.series({
  imageCollection : collectYear.select('NDVI','EVI','GPP'),
  region : ROI,
  reducer:ee.Reducer.mean(),
  scale:500,
  xProperty: 'year',})
  .setChartType('LineChart').setOptions({
  interpolateNulls: true,
  title: 'GPP & NDVI time series',
  hAxis: {title: 'Date'},
  vAxis: {title: 'GPP & NDVI & EVI',viewWindowMode: 'explicit'}
  });
print('GPP & NDVI & EVI 时间序列',Yearlychart);

结果:

可见GPP在一定程度上和植被指数有着显著的相关性,其中EVI的变化趋势与GPP变化趋势更相近。

2. 不同指数之间的关系

为了了解不同指数之间的关系,如线性,我在这里使用GPP与EVI进行分析:

javascript 复制代码
// 不同数据源的时间序列分析(GPP,NDVI and EVI)
// 研究区设置
var ROI = ee.FeatureCollection('projects/ee-******736/assets/Sichuan_province')
var styling = {color:"red",fillColor:"00000000"}
Map.centerObject(ROI,5)
Map.addLayer(ROI.style(styling),{},"geometry")

//数据选择Gpp和EVI(EVI与Gpp的时间序列更加契合)
var start = ee.Date.fromYMD(2022, 3, 1);
var end = start.advance(6, 'month');    // 选择生长季
var GPP = ee.ImageCollection('MODIS/006/MOD17A2H') // 空间分辨率为500m
                  .select('Gpp')
                  .filterDate(start, end)
                  .map(function(image){
                    return image.multiply(0.0005).set(image.toDictionary(image.propertyNames()));
					         //此处将GPP扩大了5倍
                  }).mean().rename('GPP')
                  .clip(ROI);
var EVI = ee.ImageCollection("MODIS/006/MOD13Q1")  // 空间分辨率为250m
                  .filterDate(start, end)
                  .select("EVI")
                  .map(function(image){
                    return image.multiply(0.0001).set(image.toDictionary(image.propertyNames()));
                  }).mean().reproject('EPSG:4326',null,500)
                  .clip(ROI);
				  


// 建立EVI与Gpp两个数组,需要保持两个数据的空间分辨率一致,500m即可
var merge = EVI.addBands(GPP).clip(ROI);
var array = merge.reduceRegion({reducer: ee.Reducer.toList(), geometry: ROI, scale: 1000});
var x = ee.List(array.get('GPP')).slice(0, 5000);//注意:此处的切片范围不能超过数据向量本身的范围,否则会报错
var y = ee.List(array.get('EVI')).slice(0, 5000);


// 数据可视化
var chart = ui.Chart.array.values({array: y, axis: 0, xLabels: x}).setOptions({
  title: 'Relationship between the EVI and GPP',
  colors: ['green'],
  hAxis: {
    title: 'GPP(kg*C/m^2)',
    titleTextStyle: {italic: false, bold: true},
    viewWindow: {min: 0, max: 0.3}
  },
  vAxis: {
    title: 'EVI values',
    titleTextStyle: {italic: false, bold: true},
    viewWindow: {min: -0.1, max: 0.7}
  },
  pointSize: 2, //调整点的大小
  legend: {position: 'none'},
});

print('Relationship between the EVI and GPP',chart);

结果:

可以看出GPP与EVI存在着一定的线性相关性。

EVI与地形 (海拔高度) 之间的变化关系:

javascript 复制代码
// 研究区设置
var ROI = ee.FeatureCollection('projects/ee-yipeizhao736/assets/Sichuan_province')
var styling = {color:"red",fillColor:"00000000"}
Map.centerObject(ROI,5)
Map.addLayer(ROI.style(styling),{},"geometry")

//数据选择DEM和EVI
var start = ee.Date.fromYMD(2022, 3, 1);
var end = start.advance(6, 'month');    // 选择生长季
var DEM = ee.ImageCollection('COPERNICUS/DEM/GLO30') // 空间分辨率为30m
                  .select('DEM')
                  .map(function(image){
                    return image.set(image.toDictionary(image.propertyNames()));
                  }).mean().rename('DEM')
                  .clip(ROI);
var EVI = ee.ImageCollection("MODIS/006/MOD13Q1")  // 空间分辨率为250m
                  .filterDate(start, end)
                  .select("EVI")
                  .map(function(image){
                    return image.multiply(0.0001).set(image.toDictionary(image.propertyNames()));
                  }).mean().rename('EVI')
                  .clip(ROI);
				  


var merge = EVI.addBands(DEM).clip(ROI);
var array = merge.reduceRegion({reducer: ee.Reducer.toList(), geometry: ROI, scale: 250}); //
var x = ee.List(array.get('DEM')).slice(0, 5000);
var y = ee.List(array.get('EVI')).slice(0, 5000);


// 数据可视化
var DEM_EVIchart = ui.Chart.array.values({array: y, axis: 0, xLabels: x}).setOptions({
  title: 'Relationship between the EVI and DEM',
  colors: ['green'],
  hAxis: {
    title: 'DEM(m)',
    titleTextStyle: {italic: false, bold: true},
    viewWindow: {min: 2000, max: 5500}
  },
  vAxis: {
    title: 'EVI values',
    titleTextStyle: {italic: false, bold: true},
    viewWindow: {min: -0.1, max: 0.9}
  },
  pointSize: 2, //调整点的大小
  legend: {position: 'none'},
});
print('Relationship between the EVI and DEM', DEM_EVIchart);

结果:

修改数据集,考虑NDVI与海拔之间的关系,结果如下:

可见,随着海拔上升,植被复杂存在着复杂且不均匀的变化,值得注意的是在3250 ~ 3500之间的植被分布较为集中,且包含了各种类型或者密度的植被;植被分布峰值位于3500 ~ 4000m海拔之间;通过这种方法,我们可以了解植被丰富度随海拔的变化情况。

相关推荐
莫叫石榴姐11 分钟前
大模型在数据分析领域的研究综述
大数据·数据挖掘·数据分析
低代码布道师18 分钟前
第五部分:第一节 - Node.js 简介与环境:让 JavaScript 走进厨房
开发语言·javascript·node.js
满怀10151 小时前
【Vue 3全栈实战】从响应式原理到企业级架构设计
前端·javascript·vue.js·vue
伟笑1 小时前
elementUI 循环出来的表单,怎么做表单校验?
前端·javascript·elementui
确实菜,真的爱2 小时前
electron进程通信
前端·javascript·electron
魔术师ID3 小时前
vue 指令
前端·javascript·vue.js
Clown954 小时前
Go语言爬虫系列教程 实战项目JS逆向实现CSDN文章导出教程
javascript·爬虫·golang
星空寻流年4 小时前
css3基于伸缩盒模型生成一个小案例
javascript·css·css3
小白学大数据5 小时前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
独行soc5 小时前
2025年渗透测试面试题总结-阿里云[实习]阿里云安全-安全工程师(题目+回答)
linux·经验分享·安全·阿里云·面试·职场和发展·云计算