神经网络中的知识蒸馏

多分类交叉熵损失函数:每个样本的标签已经给出,模型给出在三种动物上的预测概率。将全部样本都被正确预测的概率求得为0.70.50.1,也称为似然概率。优化的目标就是希望似然概率最大化。如果样本很多,概率不断连乘,就会造成概率越来越小。对其取对数,使其最大化。在实际运用中,损失函数都是求最小化,所以取负号,将最大化变为最小化。

教师--学生网络的方法,属于迁移学习的一种。迁移学习也就是将一个模型的性能迁移到另一个模型上,而对于教师--学生网络,教师网络往往是一个更加复杂的网络,具有非常好的性能和泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学生模型也能够具有和教师网络相近的性能,也算是一种模型压缩的方式。将教师网络的知识迁移到学生网络,就是知识蒸馏。

知识蒸馏:用教师网络的"soft target"作为学生网络的label。使用一个额外的数据集,将数据集先送入教师网络中,获得soft target。 将数据集和label送入学生网络。如果 soft target的熵很高,也就是不同类别的概率差异非常小,那么这就提供了非常多的信息。假如使用hard target作为训练label,比如猫的label为(1,0,0),那么网络只能学习到猫的梯度,而在soft target,可以得出猫和狗更像,和汽车不像。

流程:

T越大,输入的结果越soft,包含的知识也就越多。在训练的时候,教师网络和学生网络的T相同,在预测的时候,T为1。

相关推荐
ujainu几秒前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
wenzhangli73 分钟前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined3 分钟前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
brave and determined4 分钟前
CANN算子开发基础框架opbase完全解析
人工智能
笔画人生4 分钟前
系统级整合:`ops-transformer` 在 CANN 全栈架构中的角色与实践
深度学习·架构·transformer
一枕眠秋雨>o<9 分钟前
调度的艺术:CANN Runtime如何编织昇腾AI的时空秩序
人工智能
晚烛16 分钟前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼17 分钟前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何28 分钟前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能
程序猿追29 分钟前
深度解码AI之魂:CANN Compiler 核心架构与技术演进
人工智能·架构