神经网络中的知识蒸馏

多分类交叉熵损失函数:每个样本的标签已经给出,模型给出在三种动物上的预测概率。将全部样本都被正确预测的概率求得为0.70.50.1,也称为似然概率。优化的目标就是希望似然概率最大化。如果样本很多,概率不断连乘,就会造成概率越来越小。对其取对数,使其最大化。在实际运用中,损失函数都是求最小化,所以取负号,将最大化变为最小化。

教师--学生网络的方法,属于迁移学习的一种。迁移学习也就是将一个模型的性能迁移到另一个模型上,而对于教师--学生网络,教师网络往往是一个更加复杂的网络,具有非常好的性能和泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学生模型也能够具有和教师网络相近的性能,也算是一种模型压缩的方式。将教师网络的知识迁移到学生网络,就是知识蒸馏。

知识蒸馏:用教师网络的"soft target"作为学生网络的label。使用一个额外的数据集,将数据集先送入教师网络中,获得soft target。 将数据集和label送入学生网络。如果 soft target的熵很高,也就是不同类别的概率差异非常小,那么这就提供了非常多的信息。假如使用hard target作为训练label,比如猫的label为(1,0,0),那么网络只能学习到猫的梯度,而在soft target,可以得出猫和狗更像,和汽车不像。

流程:

T越大,输入的结果越soft,包含的知识也就越多。在训练的时候,教师网络和学生网络的T相同,在预测的时候,T为1。

相关推荐
进击monkey12 分钟前
2025年企业级知识库系统技术解析:如何用AI重构文档管理效率
人工智能·重构
金融小师妹15 分钟前
OpenAI拟借AI估值重构浪潮冲击1.1万亿美元IPO——基于市场情绪因子与估值量化模型的深度分析
大数据·人工智能·深度学习·1024程序员节
DisonTangor27 分钟前
OpenAI开源gpt-oss-safeguard-120b和gpt-oss-safeguard-20b
人工智能·gpt·语言模型·开源·aigc
mit6.82430 分钟前
[nanoGPT] 文本生成 | 自回归采样 | `generate`方法
人工智能
Baihai IDP33 分钟前
对 GPT 5 模型路由机制的深度解析
人工智能·gpt·ai·大模型·llms
七宝大爷36 分钟前
从 “你好 Siri” 到 “你好 GPT”:语言模型如何改变对话?
人工智能·gpt·语言模型
jghhh011 小时前
使用cvx工具箱求解svm的原问题及其对偶问题
人工智能·机器学习·支持向量机
低音钢琴1 小时前
【人工智能系列:走近人工智能05】基于 PyTorch 的机器学习开发与部署实战
人工智能·pytorch·机器学习
企鹅侠客1 小时前
用AI写了一个文档拼音标注工具 中文+拼音一键生成
人工智能·文档拼音标注
da_vinci_x1 小时前
在Substance Designer里“预演”你的游戏着色器(Shader)
人工智能·游戏·技术美术·着色器·游戏策划·游戏美术·substance designer