【红外与可见光图像融合】离散平稳小波变换域中基于离散余弦变换和局部空间频率的红外与视觉图像融合方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及文献](#🌈4 Matlab代码及文献)


💥1 概述

基于SWT_DCT_SF的红外与可见光图像融合方法是一种通过结合离散稳态小波变换(DSWT)、离散余弦变换(DCT)和局部空间频率(LSF)来混合融合红外和可见光图像的方法。

为了提高红外和视觉图像融合的性能,并提供更好的视觉效果,本文提出了一种新的融合方法。该方法首先利用DSWT将源图像的重要特征分解为一系列不同层次和空间频率的子图像。这样做的目的是为了捕捉图像的细节和结构信息。接下来,利用DCT根据不同频率的能量分离子图像的重要细节。DCT能够有效地提取图像的频域特征,从而使得融合后的图像更加清晰和自然。最后,应用LSF增强DCT系数的区域特征,以帮助图像特征的提取和融合。LSF可以提供更多的空间信息,从而提高融合效果。

为了评估所提方法的有效性,我们使用了一些常用的图像融合方法和评价指标进行了实验。实验结果表明,所提方法能够达到较好的融合效果,比其他常规图像融合方法更有效。通过将红外和可见光图像的特征进行合理的融合,我们可以获得更全面和准确的图像信息,从而提高图像的识别和分析能力。这对于许多应用领域,如军事、安防和医学图像处理等具有重要的意义。

总之,基于SWT_DCT_SF的红外与可见光图像融合方法是一种有效的融合方法,能够提高红外和可见光图像的融合效果,并提供更好的视觉效果。这种方法可以应用于各种图像处理领域,为相关应用提供更全面和准确的图像信息。

📚 2 运行结果

部分代码:

function imf=swt_dct2(M1,M2)



[m,n]=size(M1);
bs=4;
for i=1:bs:m
    for j=1:bs:n
        cb1 = M1(i:i+bs-1,j:j+bs-1);
        cb2 = M2(i:i+bs-1,j:j+bs-1);
         CB1=dct2(cb1);
         CB2=dct2(cb2);
         CBF= fusionrule(CB1,CB2,CB1,CB2);
        cbf=idct2(CBF);
        imf(i:i+bs-1,j:j+bs-1)=cbf;
        im1(i:i+bs-1,j:j+bs-1)=CB1;
        im2(i:i+bs-1,j:j+bs-1)=CB2;
        im3(i:i+bs-1,j:j+bs-1)=CBF;
        
    end
end

figure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);

figure,imshow(im1,[]);
           figure(1231);
           imagesc(M1)
           axis off
           axis image
figure,imshow(im2,[]);
           figure(1232);
           imagesc(M2)
           axis off
           axis image
figure,imshow(im3,[]);
           figure(1233);
           imagesc(imf)
           axis off
           axis image
end

function imf=swt_dct2(M1,M2)

[m,n]=size(M1);

bs=4;

for i=1:bs:m

for j=1:bs:n

cb1 = M1(i:i+bs-1,j:j+bs-1);

cb2 = M2(i:i+bs-1,j:j+bs-1);

CB1=dct2(cb1);

CB2=dct2(cb2);

CBF= fusionrule(CB1,CB2,CB1,CB2);

cbf=idct2(CBF);

imf(i:i+bs-1,j:j+bs-1)=cbf;

im1(i:i+bs-1,j:j+bs-1)=CB1;

im2(i:i+bs-1,j:j+bs-1)=CB2;

im3(i:i+bs-1,j:j+bs-1)=CBF;

end

end

figure,imshow(M1,[]);

figure,imshow(M2,[]);

figure,imshow(imf,[]);

figure,imshow(im1,[]);

figure(1231);

imagesc(M1)

axis off

axis image

figure,imshow(im2,[]);

figure(1232);

imagesc(M2)

axis off

axis image

figure,imshow(im3,[]);

figure(1233);

imagesc(imf)

axis off

axis image

end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码及文献

相关推荐
背太阳的牧羊人5 分钟前
冻结语言模型中的 自注意力层,使其参数不参与训练(梯度不会更新)。 对于跨注意力层,则解冻参数,使这些层可以进行梯度更新,从而参与训练。
人工智能·语言模型·自然语言处理
2401_8904167136 分钟前
Recaptcha2 图像怎么识别
人工智能·python·django
机器之心1 小时前
贾佳亚团队联合Adobe提出GenProp,物体追踪移除特效样样在行
人工智能
一叶_障目1 小时前
机器学习之决策树(DecisionTree——C4.5)
人工智能·决策树·机器学习
思码逸研发效能1 小时前
在 DevOps 实践中,如何构建自动化的持续集成和持续交付(CI/CD)管道,以提高开发和测试效率?
运维·人工智能·ci/cd·自动化·研发效能·devops·效能度量
AI量化投资实验室2 小时前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
张登杰踩2 小时前
如何快速下载Huggingface上的超大模型,不用梯子,以Deepseek-R1为例子
人工智能
AIGC大时代3 小时前
分享14分数据分析相关ChatGPT提示词
人工智能·chatgpt·数据分析
TMT星球3 小时前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
AI视觉网奇3 小时前
图生3d算法学习笔记
人工智能