【红外与可见光图像融合】离散平稳小波变换域中基于离散余弦变换和局部空间频率的红外与视觉图像融合方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及文献](#🌈4 Matlab代码及文献)


💥1 概述

基于SWT_DCT_SF的红外与可见光图像融合方法是一种通过结合离散稳态小波变换(DSWT)、离散余弦变换(DCT)和局部空间频率(LSF)来混合融合红外和可见光图像的方法。

为了提高红外和视觉图像融合的性能,并提供更好的视觉效果,本文提出了一种新的融合方法。该方法首先利用DSWT将源图像的重要特征分解为一系列不同层次和空间频率的子图像。这样做的目的是为了捕捉图像的细节和结构信息。接下来,利用DCT根据不同频率的能量分离子图像的重要细节。DCT能够有效地提取图像的频域特征,从而使得融合后的图像更加清晰和自然。最后,应用LSF增强DCT系数的区域特征,以帮助图像特征的提取和融合。LSF可以提供更多的空间信息,从而提高融合效果。

为了评估所提方法的有效性,我们使用了一些常用的图像融合方法和评价指标进行了实验。实验结果表明,所提方法能够达到较好的融合效果,比其他常规图像融合方法更有效。通过将红外和可见光图像的特征进行合理的融合,我们可以获得更全面和准确的图像信息,从而提高图像的识别和分析能力。这对于许多应用领域,如军事、安防和医学图像处理等具有重要的意义。

总之,基于SWT_DCT_SF的红外与可见光图像融合方法是一种有效的融合方法,能够提高红外和可见光图像的融合效果,并提供更好的视觉效果。这种方法可以应用于各种图像处理领域,为相关应用提供更全面和准确的图像信息。

📚 2 运行结果

部分代码:

复制代码
function imf=swt_dct2(M1,M2)



[m,n]=size(M1);
bs=4;
for i=1:bs:m
    for j=1:bs:n
        cb1 = M1(i:i+bs-1,j:j+bs-1);
        cb2 = M2(i:i+bs-1,j:j+bs-1);
         CB1=dct2(cb1);
         CB2=dct2(cb2);
         CBF= fusionrule(CB1,CB2,CB1,CB2);
        cbf=idct2(CBF);
        imf(i:i+bs-1,j:j+bs-1)=cbf;
        im1(i:i+bs-1,j:j+bs-1)=CB1;
        im2(i:i+bs-1,j:j+bs-1)=CB2;
        im3(i:i+bs-1,j:j+bs-1)=CBF;
        
    end
end

figure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);

figure,imshow(im1,[]);
           figure(1231);
           imagesc(M1)
           axis off
           axis image
figure,imshow(im2,[]);
           figure(1232);
           imagesc(M2)
           axis off
           axis image
figure,imshow(im3,[]);
           figure(1233);
           imagesc(imf)
           axis off
           axis image
end

function imf=swt_dct2(M1,M2)

m,n\]=size(M1); bs=4; for i=1:bs:m for j=1:bs:n cb1 = M1(i:i+bs-1,j:j+bs-1); cb2 = M2(i:i+bs-1,j:j+bs-1); CB1=dct2(cb1); CB2=dct2(cb2); CBF= fusionrule(CB1,CB2,CB1,CB2); cbf=idct2(CBF); imf(i:i+bs-1,j:j+bs-1)=cbf; im1(i:i+bs-1,j:j+bs-1)=CB1; im2(i:i+bs-1,j:j+bs-1)=CB2; im3(i:i+bs-1,j:j+bs-1)=CBF; end end figure,imshow(M1,\[\]); figure,imshow(M2,\[\]); figure,imshow(imf,\[\]); figure,imshow(im1,\[\]); figure(1231); imagesc(M1) axis off axis image figure,imshow(im2,\[\]); figure(1232); imagesc(M2) axis off axis image figure,imshow(im3,\[\]); figure(1233); imagesc(imf) axis off axis image end ### ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 ![](https://file.jishuzhan.net/article/1709747452715732993/14eb3c41c47b3afb5099e8d3e3da1c88.webp) ### [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码及文献****

相关推荐
阿坡RPA6 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049936 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心6 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI8 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c9 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2059 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清9 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh10 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员10 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物10 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技