利用maskrcnn来实现目标检测与追踪

首先下载源代码仓库,链接地址如下:

maskrcnn

能够实现的效果如图所示:

该存储库包括:

  • 基于FPN和ResNet101构建的Mask R-CNN的源代码。
  • MS COCO 的训练代码
  • MS COCO 的预训练砝码
  • Jupyter 笔记本,用于可视化每一步的检测管道
  • 用于多 GPU 训练的并行模型类
  • 对 MS COCO 指标 (AP) 的评估
  • 在自己的数据集上进行训练的示例

下载代码仓库,进行解压后的目录如下:

可以使用下面:

复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

也可以使用

复制代码
python setup.py install

来安装相关的依赖包,安装完成后,还需要下载模型文件,

下载链接地址如下:

mask_rcnn_balloon.h5

测试代码如下所示:

python 复制代码
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt

# Root directory of the project
ROOT_DIR = os.path.abspath("../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
import coco

%matplotlib inline 

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)

# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class InferenceConfig(coco.CocoConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

config = InferenceConfig()
config.display()

# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)

# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
               'bus', 'train', 'truck', 'boat', 'traffic light',
               'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
               'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
               'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
               'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
               'kite', 'baseball bat', 'baseball glove', 'skateboard',
               'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
               'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
               'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
               'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
               'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
               'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
               'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
               'teddy bear', 'hair drier', 'toothbrush']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))

# Run detection
results = model.detect([image], verbose=1)

# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
                            class_names, r['scores'])
相关推荐
掘金一周20 分钟前
被老板逼出来的“表格生成器”:一个前端的自救之路| 掘金一周 8.21
前端·人工智能·后端
yzx99101321 分钟前
从机器视觉到图像识别:计算机视觉的多维探索
人工智能·深度学习·机器学习
是Dream呀23 分钟前
GPT-5时代的AI工具:AiOnly一站式平台深度体验报告
人工智能·深度学习·机器学习
网安INF1 小时前
【论文阅读】-《SIGN-OPT: A QUERY-EFFICIENT HARD-LABEL ADVERSARIAL ATTACK》
论文阅读·人工智能·网络安全·对抗攻击
智能汽车人1 小时前
行业分析---领跑汽车2025第二季度财报
人工智能·microsoft
先做个垃圾出来………1 小时前
迁移学习(Transfer Learning)
人工智能·机器学习·迁移学习
许泽宇的技术分享1 小时前
ReAct Agent:让AI像人类一样思考与行动的革命性框架
人工智能·agent·react
eBest数字化转型方案2 小时前
2025年快消品行业渠道数字化营销系统全景透视与选型策略
人工智能
kkcodeer3 小时前
大模型Prompt原理、编写原则与技巧以及衡量方法
人工智能·prompt·ai大模型