利用maskrcnn来实现目标检测与追踪

首先下载源代码仓库,链接地址如下:

maskrcnn

能够实现的效果如图所示:

该存储库包括:

  • 基于FPN和ResNet101构建的Mask R-CNN的源代码。
  • MS COCO 的训练代码
  • MS COCO 的预训练砝码
  • Jupyter 笔记本,用于可视化每一步的检测管道
  • 用于多 GPU 训练的并行模型类
  • 对 MS COCO 指标 (AP) 的评估
  • 在自己的数据集上进行训练的示例

下载代码仓库,进行解压后的目录如下:

可以使用下面:

复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

也可以使用

复制代码
python setup.py install

来安装相关的依赖包,安装完成后,还需要下载模型文件,

下载链接地址如下:

mask_rcnn_balloon.h5

测试代码如下所示:

python 复制代码
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt

# Root directory of the project
ROOT_DIR = os.path.abspath("../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
import coco

%matplotlib inline 

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)

# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class InferenceConfig(coco.CocoConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

config = InferenceConfig()
config.display()

# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)

# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
               'bus', 'train', 'truck', 'boat', 'traffic light',
               'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
               'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
               'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
               'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
               'kite', 'baseball bat', 'baseball glove', 'skateboard',
               'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
               'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
               'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
               'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
               'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
               'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
               'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
               'teddy bear', 'hair drier', 'toothbrush']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))

# Run detection
results = model.detect([image], verbose=1)

# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
                            class_names, r['scores'])
相关推荐
扫描电镜几秒前
从 G1 到 G7:台式扫描电镜在稳定性与自动化上的技术演进
运维·人工智能·自动化
CNRio4 分钟前
AI Agent与移动终端深度融合:开启人机交互新纪元
人工智能·人机交互
Faker66363aaa5 分钟前
基于yolo13-C3k2-DBB的铝罐识别与分类系统
人工智能·目标跟踪
CNRio6 分钟前
AI眼镜:从“增强现实“到“增强体验“的技术跃迁与产业机遇
人工智能·ar
围炉聊科技9 分钟前
实测 Kandinsky 5.0 图编辑功能:与龙猫模型效果深度对比,结果出乎意料!
人工智能
golang学习记10 分钟前
GPT-5.2 发布:不是小升级,是「智能跃迁」
人工智能
HitpointNetSuite12 分钟前
云原生与 AI:NetSuite 如何塑造亚太中端市场
人工智能·云原生
Salt_072817 分钟前
DAY 37 MLP 神经网络的训练
人工智能·python·深度学习·神经网络·机器学习
一水鉴天20 分钟前
整体设计 定稿 之6 完整设计文档讨论及定稿 之3 整体设计原则(原型-过程-模块三阶联动体系)
前端·数据库·人工智能
Katecat9966323 分钟前
背胶条分类识别:基于计算机视觉的修复状态差异检测与质量评估系统
计算机视觉·分类·数据挖掘