
论文作者:Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae
作者单位:Sony AI; Kyung-Hee University
论文链接:http://arxiv.org/abs/2308.01888v1
内容简介:
1)方向:目标检测
2)应用:目标检测
3)背景:目标检测是计算机视觉中的重要任务,已经成为许多关键系统的组成部分。然而,与分类模型类似,最先进的目标检测器容易受到微小的对抗性扰动的影响,这可能会显著改变它们的正常行为。与分类不同,目标检测器的鲁棒性尚未得到深入探究。
4)方法:本研究通过利用对抗训练的分类模型,首次尝试弥合分类和目标检测之间的鲁棒性差距。仅仅使用对抗训练的模型作为目标检测的骨干网络并不能实现鲁棒性。作者提出了对基于分类的骨干网络进行有效修改的方法,以在不增加计算开销的情况下增强目标检测的鲁棒性。为了进一步提高所提出的修改骨干网络所实现的鲁棒性,引入了两个轻量级组件:模仿损失和延迟对抗训练。
5)结果:在MS-COCO和Pascal VOC数据集上进行了大量实验证明了所提出的方法的有效性。










