目标检测:FROD: Robust Object Detection for Free

论文作者:Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae

作者单位:Sony AI; Kyung-Hee University

论文链接:http://arxiv.org/abs/2308.01888v1

内容简介:

1)方向:目标检测

2)应用:目标检测

3)背景:目标检测是计算机视觉中的重要任务,已经成为许多关键系统的组成部分。然而,与分类模型类似,最先进的目标检测器容易受到微小的对抗性扰动的影响,这可能会显著改变它们的正常行为。与分类不同,目标检测器的鲁棒性尚未得到深入探究。

4)方法:本研究通过利用对抗训练的分类模型,首次尝试弥合分类和目标检测之间的鲁棒性差距。仅仅使用对抗训练的模型作为目标检测的骨干网络并不能实现鲁棒性。作者提出了对基于分类的骨干网络进行有效修改的方法,以在不增加计算开销的情况下增强目标检测的鲁棒性。为了进一步提高所提出的修改骨干网络所实现的鲁棒性,引入了两个轻量级组件:模仿损失和延迟对抗训练。

5)结果:在MS-COCO和Pascal VOC数据集上进行了大量实验证明了所提出的方法的有效性。

相关推荐
知舟不叙6 分钟前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能24 分钟前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea36 分钟前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人1 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
编程在手天下我有1 小时前
计算机视觉(CV)技术的优势和挑战
计算机视觉
zm-v-159304339861 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt
果冻人工智能1 小时前
美国狂奔,中国稳走,AI赛道上的龟兔之争?
人工智能
牙牙要健康1 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV2模型算法详解
pytorch·深度学习·目标检测
果冻人工智能1 小时前
再谈AI与程序员: AI 写的代码越来越多,那我们还需要开发者吗?
人工智能