目标检测:FROD: Robust Object Detection for Free

论文作者:Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae

作者单位:Sony AI; Kyung-Hee University

论文链接:http://arxiv.org/abs/2308.01888v1

内容简介:

1)方向:目标检测

2)应用:目标检测

3)背景:目标检测是计算机视觉中的重要任务,已经成为许多关键系统的组成部分。然而,与分类模型类似,最先进的目标检测器容易受到微小的对抗性扰动的影响,这可能会显著改变它们的正常行为。与分类不同,目标检测器的鲁棒性尚未得到深入探究。

4)方法:本研究通过利用对抗训练的分类模型,首次尝试弥合分类和目标检测之间的鲁棒性差距。仅仅使用对抗训练的模型作为目标检测的骨干网络并不能实现鲁棒性。作者提出了对基于分类的骨干网络进行有效修改的方法,以在不增加计算开销的情况下增强目标检测的鲁棒性。为了进一步提高所提出的修改骨干网络所实现的鲁棒性,引入了两个轻量级组件:模仿损失和延迟对抗训练。

5)结果:在MS-COCO和Pascal VOC数据集上进行了大量实验证明了所提出的方法的有效性。

相关推荐
Piar1231sdafa12 小时前
野猪目标检测与识别_基于YOLO11-Attention模型的改进实现
人工智能·目标检测·计算机视觉
光羽隹衡12 小时前
计算机视觉——Opencv(基础操作二)
人工智能·opencv·计算机视觉
一路向阳~负责的男人12 小时前
PyTorch / CUDA 是什么?它们的关系?
人工智能·pytorch·python
2501_9413331012 小时前
乒乓球比赛场景目标检测与行为分析研究
人工智能·目标检测·计算机视觉
岑梓铭12 小时前
YOLO深度学习(计算机视觉)一很有用!!(进一步加快训练速度的操作)
人工智能·深度学习·神经网络·yolo·计算机视觉
2401_8414956413 小时前
深度卷积生成对抗网络(DCGAN)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·深度卷积生成对抗网络
byzh_rc13 小时前
[深度学习网络从入门到入土] 反向传播backprop
网络·人工智能·深度学习
BOLD-Rainbow13 小时前
DCRNN (Diffusion Convolutional Recurrent Neural Network)
人工智能·深度学习·机器学习
zhangfeng113313 小时前
如何用小内存电脑训练大数据的bpe,16g内存训练200g数据集默认是一次性读入内存训练
大数据·人工智能
Candice Can13 小时前
【机器学习】吴恩达机器学习Lecture1
人工智能·机器学习·吴恩达机器学习