leetcode 62. 不同路径、63.不同路径||

62. 不同路径

一个机器人位于一个 m x n网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。

问总共有多少条不同的路径?

示例 1:

复制代码
输入:m = 3, n = 7
输出:28

示例 2:

复制代码
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

复制代码
输入:m = 7, n = 3
输出:28

示例 4:

复制代码
输入:m = 3, n = 3
输出:6
思路:

//dp[i][j]表示走到第i行第j列有多少种方法

//dp[i][j] = dp[i-1][j]+dp[i][j-1];

//初始化dp[0][j] = 1; dp[i][0] = 1;

//遍历顺序 两层for循环i,j

//打印dp数组

代码:
cpp 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        //dp[i][j]表示走到第i行第j列有多少种方法
        //dp[i][j] = dp[i-1][j]+dp[i][j-1];
        //初始化dp[0][j] = 1; dp[i][0] = 1;
        //遍历顺序 两层for循环i,j
        //打印dp数组
        vector<vector<int>>dp(m+1,vector<int>(n+1,0));
        for(int i = 0;i<m;i++)
        {
            dp[i][0] = 1;
        }
        for(int i = 0;i<n;i++)
        {
            dp[0][i] = 1;
        }
        for(int i = 1;i<m;i++)
        {
            for(int j = 1;j<n;j++)
            {
                dp[i][j] = dp[i-1][j]+dp[i][j-1]; 
            }
        }
        return dp[m-1][n-1];
    }
};

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

复制代码
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

复制代码
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
思路:

//dp[i][j]表示走到第i行第j列有多少种方法

//dp[i][j] = dp[i-1][j]+dp[i][j-1];

//初始化dp[0][j] = 1; dp[i][0] = 1;

//遍历顺序 两层for循环i,j

//打印dp数组

代码:
cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        //dp[i][j]表示走到第i行第j列有多少种方法
        //dp[i][j] = dp[i-1][j]+dp[i][j-1];
        //初始化dp[0][j] = 1; dp[i][0] = 1;
        //遍历顺序 两层for循环i,j
        //打印dp数组
        if(obstacleGrid[0][0]==1) return 0;
        vector<vector<int>>dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0));
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        for(int i = 0;i<m;i++)
        {  if(obstacleGrid[i][0]==1)
            break;
            dp[i][0] = 1;
        }
        for(int i = 0;i<n;i++)
        {     
            if(obstacleGrid[0][i]==1)
            break;
            dp[0][i] = 1;
        }
        for(int i = 1;i<m;i++)
        {
            for(int j = 1;j<n;j++)
            {
                if(obstacleGrid[i][j]==0)
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
                else
                dp[i][j] = 0; 
            }
        }
        return dp[m-1][n-1];
    }
};

还有很多瑕疵,还需继续坚持!

相关推荐
大怪v6 分钟前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工2 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农3 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了4 小时前
AcWing学习——双指针算法
c++·算法
感哥4 小时前
C++ 指针和引用
c++
moonlifesudo4 小时前
322:零钱兑换(三种方法)
算法
感哥14 小时前
C++ 多态
c++
沐怡旸21 小时前
【底层机制】std::string 解决的痛点?是什么?怎么实现的?怎么正确用?
c++·面试
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法