OpenAI官方ChatGPT提示工程 - 最佳实践11篇(大合集)

今年,在OpenAI开放了ChatGPT不久后,网络上出现了许多关于如何编写Prompt的教程。这些课程和相关的Prompt模版,在一定程度上弥补了这块新鲜领域的空白,使得大家对于如何编写Prompt有了一定的认知。

在这不久之后,OpenAI和吴恩达合作开发了一套针对ChatGPT提示工程的最佳实践课程,课程名为《ChatGPT Prompt Engineering for Developers》。

随后,OpenAI官方又正式的发布了一份"GPT 最佳实践"指南,可以说是期盼已久。官方出品,必是精品。想快速了解,可以先看看这篇文章:GPT最佳实践 - 提升Prompt效果的六个策略

本文汇总了这些官方权威教程的所有文章,内容包括:

  • OpenAI官方GPT最佳实践的六个策略,共6篇文章
  • OpenAI与吴恩达合作开发的ChatGPT提示工程课程,共5篇文章
  • 扩展内容
    • OpenAI关于AGI通用人工智能及未来技术的规划
    • 比尔·盖茨关于"人工智能的风险是真实存在的"的思考

一、OpenAI官方GPT 最佳实践指南

本指南分享了提高GPT的效果的策略和方法,这些方法有时可以结合使用以获得更好的效果。同时鼓励多尝试试验,找到最适合自己的方法。

以下是提高Prompt效果的六大关键策略:

1.编写清晰的提示

如果GPT输出的内容过长,可以要求模型进行简短的回复;如果输出过于简单,可以要求模型使用专业的写作水准输出内容。如果你对输出的格式不满意,可以提供自己想要的格式。越是明确表达自己的需求,越有可能得到满意的答案。

提升GPT Prompt效果最佳实践 - 编写清晰的提示

2.提供参考文本

GPT模型可以自信地编造虚假答案,尤其是在涉及深奥主题或引用和URL时。就像学生在考试时可以查看笔记来帮助自己更好地回答问题一样,向GPT模型提供参考文本可以帮助其减少编造虚假答案的情况。

提升GPT Prompt效果最佳实践 - 提供参考文本

3.将复杂的任务拆分为更简单的子任务

就像在软件工程中将复杂系统分解为一组模块化组件一样,在提交给GPT模型的任务中也是如此。复杂任务往往比简单任务出错率更高。此外,复杂任务通常可以重新定义为一系列简单任务的工作流程,其中前置任务的输出作为后续任务的输入。

提升GPT Prompt效果最佳实践 - 拆解复杂任务

4.给 GPT 时间思考

如果让你计算17乘以28,你可能不会立即知道答案,但是却可以花时间计算出来。类似地,当GPT试图立即回答问题时,它会犯更多的推理错误,而不是花时间计算出答案。在回答问题之前,要求模型给出一系列的推理过程可以帮助GPT更可靠地推理正确的答案。

提升GPT Prompt效果最佳实践 - 给 GPT 时间思考

5.使用外部工具

通过使用其他工具的输出来弥补GPT的不足。例如,使用文本检索系统来告诉GPT相关文档的信息,或者使用代码执行引擎来帮助GPT进行数学计算和代码运行。如果有其他工具可以更可靠或更有效地完成某个任务,就应该使用这些工具,以获得最佳效果。

提升GPT Prompt效果最佳实践 - 使用外部工具

6.系统地测试变更

如果能够进行测量,那么提高效果就会更容易。在某些情况下,对提示的修改会在几个孤立的示例上实现更好的效果,但会导致在一组更具代表性的示例上整体表现变差。因此,为了确保更改对效果能够产生积极的影响,可能有必要定义一个全面的测试套件(也称为"评估(eval)")。

提升GPT Prompt效果最佳实践 - 系统的测试变更

二、OpenAI与吴恩达合作的ChatGPT提示工程课程

这门课程时长为1个小时,内容简单易懂,还提供了实践的环境。讲师是吴恩达(Andrew Ng,DeepLearning.AI创始人)和伊莎·富尔福德(Isa Fulford,OpenAI的技术人员),含金量非常高。

以下是该课程的5篇文章:

1.编写Prompt的两个关键原则

  • 原则一:编写清晰、具体的说明
  • 原则二:给予模型思考的时间

ChatGPT提示工程的两个关键原则

2.文本总结

这篇主要介绍了如何对内容进行总结,可以让模型来总结/提取重点内容,限制结果的长度。

ChatGPT提示工程 - 总结

3.文本推理

可以让模型来识别一段内容的情绪,或者提取指定的内容。

也可以一次性执行多个任务,从而节省多次请求的整体耗时和成本。

ChatGPT提示工程 - 推理

4.文本转换

在这篇文章中,介绍了如何使用大型语言模型来进行文本转换工作,如语言翻译、语调调整和格式转换。

ChatGPT提示工程 - 转换

5.邮件回复与营销文案

在这篇文章中,介绍了如何使用大型语言模型来进行邮件自动回复、生成营销文案。

ChatGPT提示工程 - 邮件回复、营销文案

三、规划与风险

OpenAI关于AGI通用人工智能及未来技术的规划(全文译文)

人工智能的风险是真实存在的 - 比尔·盖茨

最后

如果大家感兴趣的话,也建议去官网学习一下。然后结合我总结的文章,以达到更好的学习效果。

无论如何,这些提示工程的最佳实践课程是OpenAI官方出品,还有吴恩达的加持,属于行业顶尖的权威教程。请大家务必收藏好,以便随时进行查阅和复习。

希望这些文章能够助你在接下来的AI之路,赢在起跑线上。

参考

platform.openai.com/docs/guides...

www.deeplearning.ai/short-cours...

相关推荐
渡我白衣5 小时前
多路转接之epoll:理论篇
人工智能·神经网络·网络协议·tcp/ip·自然语言处理·信息与通信·tcpdump
明月照山海-5 小时前
机器学习周报二十八
人工智能·机器学习
weixin_4374977711 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端11 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat11 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技11 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪11 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子11 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z11 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人12 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程