1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning

2022CIKM

1 intro

1.1 背景

  • 轨迹相似度计算是轨迹分析任务(相似子轨迹搜索、轨迹预测和轨迹聚类)最基础的组件之一
  • 现有的关于轨迹相似度计算的研究主要可以分为两大类:
    • 传统方法
      • DTW、EDR、EDwP等
      • 二次计算复杂度O(n^2)
      • 缺乏稳健性
        • 会受到非均匀采样、噪点的影响
    • 基于学习的方法
      • 旨在减少计算复杂度和/或提高稳健性
      • 根据它们的目的将它们分为两个方向
        • 神经逼近方法
          • 利用强大的神经网络在隐藏空间中逼近任何现有的轨迹测量
          • 训练一个神经网络g以将轨迹编码到隐藏空间
          • 最小化估计的相似性和基准之间的差异
              • Dh是隐藏空间中的差异(相似性)测量(例如,欧几里得距离)
          • 不需要两个轨迹之间的点对齐,因此计算复杂度在轨迹的长度上是线性的
          • 由于要逼近的测量而遭受 稳健性问题
        • auto-encoder 方法
          • 无监督地学习映射函
          • 为了提高潜在表示相对于低质量的鲁棒性,这些方法采用了不同的策略
            • t2vec利用去噪顺序自编码器
            • Trembr整合了路网信息并设计了多个任务
          • 在训练编码模型方面 效率低下
            • 这是由于顺序自编码器架构的固有限制,其中解码过程和逐步重构非常耗时
            • t2vec 在 Tesla K40 GPU 上训练 2千万轨迹的一个epoch大约需要 14 小时,平均每个轨迹有 60 个样本
          • 这些方法试图学习相同基础路线轨迹(高采样轨迹)的一致表示以解决质量问题
            • 换句话说,即使来自相同基础路线的轨迹具有不同的采样率和噪点,表示应该是相同的
            • 论文认为,由于他们的目标是重构轨迹而不是基础路线,顺序自编码器无法实现这一目标
            • ------>对于顺序自编码器来说, 获得一致的表示是非常困难的

1.2 论文思路

  • 提出了一种基于对比学习的轨迹相似性计算的新型鲁棒模型(CL-TSim)

    • 遵循常见的范例,首先学习轨迹的表示,然后使用欧几里得距离在编码空间中计算轨迹之间的相似性
  • 对轨迹 Ti 进行预处理,以获得增强轨迹 Tj

    • 其中使用下采样和扭曲增强来适应轨迹特征,包括非均匀采样率和噪点
  • 同时将它们编码到隐藏空间并最大化它们之间的一致性

  • 遵循对比学习架构,CL-TSim 只包含一个编码器和一个投影器

    • 编码器用于编码原始轨迹以学习它们的表示
    • 投影器用于将表示映射到损失函数的度量空间
    • 与顺序自编码器相比,它不需要解码器和逐步重构,这可以显著减少训练时间。

2 Preliminary

2.1 基础路线

  • 由移动对象生成的连续空间曲线
  • 只存在于理论中,因为配备了 GPS 的设备无法连续记录时空位置

2.2 轨迹

  • 移动对象的轨迹,记为 T
  • 从基础路线中采样的一系列有限点的序列,形式为 𝑇=((𝑥1,𝑦1,𝑡1),(𝑥2,𝑦2,𝑡2),...,(𝑥𝑛,𝑦𝑛,𝑡𝑛))
  • xi,yi 代表在时间戳 𝑡𝑖 的采样位置的经度和纬度信息
  • 受采样方法和设备的影响,轨迹通常基于不同的采样率生成,并包含有噪点

2.3 问题定义

给定一组轨迹,我们的问题是设计一个高效且鲁棒的模型,以计算轨迹之间的相似性,目标如下:

1)高效的表示学习:有效地为每个轨迹 T 学习一个表示 t,其中 t 可以反映轨迹 T 的基础路线,用于计算轨迹相似性;

2)模型的鲁棒性:换句话说,两个任意轨迹Ti 和Tj 之间的相似性是一致的,不受非均匀采样率和噪点的影响

3 模型

4 实验

4.1 数据

4.2 评估方法

4.2.1 自相似性

  • 给定一组轨迹,随机选择 m 条轨迹和 n 条轨迹,分别记为 Q 和 D
    • 对于 Q 中的每条轨迹,通过交替从中取点来创建两个子轨迹(称为双胞胎轨迹),并将第一个子轨迹加入 Q1,而另一个加入 Q2
    • 对于 Q1 中的每条轨迹,称为查询轨迹,我们在Q2∪D 中检索最相似的轨迹,称为数据库轨迹
    • 显然,Q2 中的轨迹应该排在 D 之前,因为它们是由与 Q1 中相同的轨迹生成的
  • 假设 Ti 是 Q1 中的一个查询轨迹,而 Tj 是 Q2 中的相应双胞胎轨迹
    • 计算 Ti 与 Q2∪D1 之间轨迹的相似性,根据相似性对轨迹进行排序,并记 Tj 的排名为 ri
  • 基于此,采用两个广泛使用的度量标准,即精确度 P 和平均排名 MR

当 ri 等于 0 时,pi 等于 1;否则,pi 等于 0。(只有查询数据集里面Tj是最相似的,才会是1)

更大的 P 或更小的 MR 值意味着更好的自相似性性能。

4.2.2 交叉相似性

一个好的相似性度量应该能够保持两个不同轨迹之间的相似性,而不考虑数据采样策略

交叉距离偏差(CDD)来评估性能

Ta 和 Tb 是具有原始率的两个不同的轨迹,Ta′(rd) 是通过以 d 的速率随机丢弃(或扭曲)样本点获得的Ta 的变体,而 Tb′(rd) 是以与 Ta′(rd) 相同的方式获得的 Tb 的变体。

较小的 CDD 值表明评估的相似性(即,距离)更接近真实值。

4.3 结果

相关推荐
何大春5 小时前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
Bearnaise2 天前
GaussianDreamer: Fast Generation from Text to 3D Gaussians——点云论文阅读(11)
论文阅读·人工智能·python·深度学习·opencv·计算机视觉·3d
PD我是你的真爱粉2 天前
Quality minus junk论文阅读
论文阅读
regret~3 天前
【论文笔记】LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
论文阅读·深度学习·transformer
Maker~3 天前
23、论文阅读:基于多分辨率特征学习的层次注意力聚合GAN水下图像增强
论文阅读·学习·生成对抗网络
Q_yt3 天前
【图像压缩感知】论文阅读:Content-Aware Scalable Deep Compressed Sensing
论文阅读
江海寄3 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review(三)总结梳理-疑点记录
论文阅读·人工智能·深度学习·机器学习·计算机视觉·语言模型·视觉检测
江海寄3 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review (四)三种分类方法对比
论文阅读·人工智能·深度学习·机器学习·计算机视觉·分类
代码太难敲啊喂3 天前
【Anomaly Detection论文阅读记录】Resnet网络与WideResNet网络
论文阅读·人工智能
YunTM3 天前
革新预测领域:频域融合时间序列预测,深度学习新篇章,科研涨点利器
论文阅读·人工智能·深度学习