pytorch 数据载入

在PyTorch中,数据载入是训练深度学习模型的重要一环。

本文将介绍三种常用的数据载入方式:Dataset、DataLoader、以及自定义的数据加载器。

  1. 使用 Dataset 载入数据
    方法:

    from torch.utils.data import Dataset

    class CustomDataset(Dataset):
    def init(self, ...):
    # 初始化数据集
    # ...

    复制代码
     def __len__(self):
         # 返回数据集的大小
         return len(self.data)
    
     def __getitem__(self, idx):
         # 根据索引返回样本和标签
         return self.data[idx], self.labels[idx]

使用示例:

复制代码
custom_dataset = CustomDataset(...)
  1. 使用 DataLoader 加载数据集
    方法:

    from torch.utils.data import DataLoader

    data_loader = DataLoader(
    dataset,
    batch_size=32,
    shuffle=True,
    num_workers=4,
    drop_last=True,
    )

参数说明:

dataset: 要加载的数据集对象。

batch_size: 每个批次的样本数量。

shuffle: 是否在每个 epoch 开始时打乱数据。

num_workers: 用于数据加载的进程数。

drop_last: 是否丢弃最后一个不完整的批次。

使用示例:

复制代码
for data, labels in data_loader:
    # 训练模型的逻辑
  1. 使用自定义的 Data Loader
    方法:

    from torch.utils.data import DataLoader, IterableDataset

    class CustomDataLoader(IterableDataset):
    def init(self, ...):
    # 初始化数据加载器
    # ...

    复制代码
     def __iter__(self):
         # 返回一个迭代器
         return iter(self.data)

使用示例:

复制代码
custom_loader = CustomDataLoader(...)
for data in custom_loader:
    # 自定义数据处理逻辑

注意事项:

Dataset 和 DataLoader 是 PyTorch 提供的数据载入工具,通常能满足大多数情况。

自定义数据加载器 (IterableDataset) 可以用于特殊情况下的数据加载需求。

总结:

使用 Dataset 创建数据集对象,实现 lengetitem 方法。

使用 DataLoader 加载数据集,设置参数如 batch_size、shuffle 等。

可选地,使用自定义的数据加载器 (IterableDataset) 处理特殊情况下的数据载入需求。

相关推荐
buttonupAI3 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876484 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
咖啡の猫4 小时前
Python字典推导式
开发语言·python
曹文杰15190301124 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄4 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把4 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL5 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
Wulida0099915 小时前
建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
python
呆萌很5 小时前
HSV颜色空间过滤
人工智能
FJW0208145 小时前
Python_work4
开发语言·python