pytorch 数据载入

在PyTorch中,数据载入是训练深度学习模型的重要一环。

本文将介绍三种常用的数据载入方式:Dataset、DataLoader、以及自定义的数据加载器。

  1. 使用 Dataset 载入数据
    方法:

    from torch.utils.data import Dataset

    class CustomDataset(Dataset):
    def init(self, ...):
    # 初始化数据集
    # ...

    复制代码
     def __len__(self):
         # 返回数据集的大小
         return len(self.data)
    
     def __getitem__(self, idx):
         # 根据索引返回样本和标签
         return self.data[idx], self.labels[idx]

使用示例:

复制代码
custom_dataset = CustomDataset(...)
  1. 使用 DataLoader 加载数据集
    方法:

    from torch.utils.data import DataLoader

    data_loader = DataLoader(
    dataset,
    batch_size=32,
    shuffle=True,
    num_workers=4,
    drop_last=True,
    )

参数说明:

dataset: 要加载的数据集对象。

batch_size: 每个批次的样本数量。

shuffle: 是否在每个 epoch 开始时打乱数据。

num_workers: 用于数据加载的进程数。

drop_last: 是否丢弃最后一个不完整的批次。

使用示例:

复制代码
for data, labels in data_loader:
    # 训练模型的逻辑
  1. 使用自定义的 Data Loader
    方法:

    from torch.utils.data import DataLoader, IterableDataset

    class CustomDataLoader(IterableDataset):
    def init(self, ...):
    # 初始化数据加载器
    # ...

    复制代码
     def __iter__(self):
         # 返回一个迭代器
         return iter(self.data)

使用示例:

复制代码
custom_loader = CustomDataLoader(...)
for data in custom_loader:
    # 自定义数据处理逻辑

注意事项:

Dataset 和 DataLoader 是 PyTorch 提供的数据载入工具,通常能满足大多数情况。

自定义数据加载器 (IterableDataset) 可以用于特殊情况下的数据加载需求。

总结:

使用 Dataset 创建数据集对象,实现 lengetitem 方法。

使用 DataLoader 加载数据集,设置参数如 batch_size、shuffle 等。

可选地,使用自定义的数据加载器 (IterableDataset) 处理特殊情况下的数据载入需求。

相关推荐
冰西瓜6006 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术6 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技6 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
在屏幕前出油6 小时前
二、Python面向对象编程基础——理解self
开发语言·python
Java后端的Ai之路6 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟7 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
阿方索7 小时前
python文件与数据格式化
开发语言·python
喜欢吃豆7 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站7 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats8 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown