pytorch 数据载入

在PyTorch中,数据载入是训练深度学习模型的重要一环。

本文将介绍三种常用的数据载入方式:Dataset、DataLoader、以及自定义的数据加载器。

  1. 使用 Dataset 载入数据
    方法:

    from torch.utils.data import Dataset

    class CustomDataset(Dataset):
    def init(self, ...):
    # 初始化数据集
    # ...

    复制代码
     def __len__(self):
         # 返回数据集的大小
         return len(self.data)
    
     def __getitem__(self, idx):
         # 根据索引返回样本和标签
         return self.data[idx], self.labels[idx]

使用示例:

复制代码
custom_dataset = CustomDataset(...)
  1. 使用 DataLoader 加载数据集
    方法:

    from torch.utils.data import DataLoader

    data_loader = DataLoader(
    dataset,
    batch_size=32,
    shuffle=True,
    num_workers=4,
    drop_last=True,
    )

参数说明:

dataset: 要加载的数据集对象。

batch_size: 每个批次的样本数量。

shuffle: 是否在每个 epoch 开始时打乱数据。

num_workers: 用于数据加载的进程数。

drop_last: 是否丢弃最后一个不完整的批次。

使用示例:

复制代码
for data, labels in data_loader:
    # 训练模型的逻辑
  1. 使用自定义的 Data Loader
    方法:

    from torch.utils.data import DataLoader, IterableDataset

    class CustomDataLoader(IterableDataset):
    def init(self, ...):
    # 初始化数据加载器
    # ...

    复制代码
     def __iter__(self):
         # 返回一个迭代器
         return iter(self.data)

使用示例:

复制代码
custom_loader = CustomDataLoader(...)
for data in custom_loader:
    # 自定义数据处理逻辑

注意事项:

Dataset 和 DataLoader 是 PyTorch 提供的数据载入工具,通常能满足大多数情况。

自定义数据加载器 (IterableDataset) 可以用于特殊情况下的数据加载需求。

总结:

使用 Dataset 创建数据集对象,实现 lengetitem 方法。

使用 DataLoader 加载数据集,设置参数如 batch_size、shuffle 等。

可选地,使用自定义的数据加载器 (IterableDataset) 处理特殊情况下的数据载入需求。

相关推荐
智算菩萨23 分钟前
从对话演示到智能工作平台:ChatGPT的三年演进史(2022-2025)
人工智能·chatgpt
lsrsyx26 分钟前
以科技守护长寿:Quantum Life 自主研发AI驱动平台助力港怡医疗,开启香港精准预防医疗新时代
人工智能·科技
Good kid.32 分钟前
基于XGBoost的中文垃圾分类系统实战(TF-IDF + XGBoost)
人工智能·分类·tf-idf
我送炭你添花8 小时前
Pelco KBD300A 模拟器:03.Pelco-P 协议 8 字节完整拆解 + 与 Pelco-D 一一对应终极对照表
python·测试工具·运维开发
It's now8 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R8 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
R.lin8 小时前
Java 8日期时间API完全指南
java·开发语言·python
西南胶带の池上桜8 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI8 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型