LeetCode //C - 212. Word Search II

Given an m x n board of characters and a list of strings words , return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:
  • m == board.length
  • n == board[i].length
  • 1 <= m, n <= 12
  • board[i][j] is a lowercase English letter.
  • 1 <= words.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
  • 1 <= words[i].length <= 10
  • words[i] consists of lowercase English letters.
  • All the strings of words are unique.

From: LeetCode

Link: 212. Word Search II


Solution:

Ideas:

Trie (Prefix Tree):

A Trie is a tree-like data structure that is used to store a dynamic set of strings. Tries are particularly useful for searches in dictionaries with a large number of words. Each node of the Trie represents a single character of a word, and the path from the root node to any node in the tree represents the prefix (part of a word) associated with that node.

Benefits of Trie:

  1. Provides efficient word insertions and lookups.
  2. Allows us to search for a word prefix efficiently.

DFS Backtracking:

Backtracking is a general algorithm used to find all (or some) solutions to computational problems by incrementally building candidates towards solutions and abandoning a candidate as soon as it is determined that it cannot be extended to a valid solution.

In the context of this problem, we use backtracking to traverse the board starting from each cell. For each cell, we explore in all four possible directions (up, down, left, right) to see if we can form a word present in the Trie.

Solution Steps:

  1. Building the Trie:
  • All the words in the words array are inserted into a Trie.
  • Each node in the Trie has 26 pointers (for each lowercase English letter) and a word pointer which points to the word if that node marks the end of a valid word.
  1. DFS Search on Board:
  • We iterate over each cell of the board.
  • Starting from each cell, we perform a DFS search to build words and check if they are in the Trie.
  • While traversing, if the current sequence of characters doesn't match any prefix in the Trie, we backtrack (return from the recursion).
  • If we find a valid word (by reaching a Trie node that has a non-null word pointer), we add that word to the results.
  1. Optimization:
  • Once a word is found, we nullify the word pointer in the Trie node to ensure that the same word is not added multiple times.
Code:
c 复制代码
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

typedef struct TrieNode {
    struct TrieNode *children[26];
    char *word;
} TrieNode;

TrieNode* createNode() {
    TrieNode *node = malloc(sizeof(TrieNode));
    for (int i = 0; i < 26; i++) {
        node->children[i] = NULL;
    }
    node->word = NULL;
    return node;
}

void insert(TrieNode *root, char *word) {
    TrieNode *node = root;
    for (int i = 0; word[i]; i++) {
        int index = word[i] - 'a';
        if (!node->children[index]) {
            node->children[index] = createNode();
        }
        node = node->children[index];
    }
    node->word = word;
}

void backtrack(char **board, int boardSize, int* boardColSize, TrieNode *node, int i, int j, char **result, int *returnSize) {
    if (i < 0 || i >= boardSize || j < 0 || j >= boardColSize[i] || board[i][j] == '#') {
        return;
    }
    
    char c = board[i][j];
    if (!node->children[c - 'a']) {
        return;
    }

    node = node->children[c - 'a'];
    if (node->word) {
        result[*returnSize] = node->word;
        (*returnSize)++;
        node->word = NULL; // To avoid duplication
    }

    board[i][j] = '#';  // Mark as visited
    backtrack(board, boardSize, boardColSize, node, i+1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i-1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j+1, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j-1, result, returnSize);
    board[i][j] = c;    // Revert back
}

char** findWords(char** board, int boardSize, int* boardColSize, char **words, int wordsSize, int* returnSize) {
    TrieNode *root = createNode();
    for (int i = 0; i < wordsSize; i++) {
        insert(root, words[i]);
    }
    
    char **result = malloc(wordsSize * sizeof(char*));
    *returnSize = 0;

    for (int i = 0; i < boardSize; i++) {
        for (int j = 0; j < boardColSize[i]; j++) {
            backtrack(board, boardSize, boardColSize, root, i, j, result, returnSize);
        }
    }

    return result;
}
相关推荐
位东风几秒前
希尔排序(Shell Sort)详解
算法·排序算法
AI科技星14 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
橘颂TA16 分钟前
【剑斩OFFER】算法的暴力美学——leetCode 946 题:验证栈序列
c++·算法·leetcode·职场和发展·结构与算法
闻缺陷则喜何志丹19 分钟前
【状态机动态规划】3686. 稳定子序列的数量|1969
c++·算法·动态规划·力扣·状态机动态规划
寻星探路29 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
wen__xvn31 分钟前
力扣第 484 场周赛
算法·leetcode·职场和发展
YuTaoShao42 分钟前
【LeetCode 每日一题】865. 具有所有最深节点的最小子树——(解法一)自顶向下
算法·leetcode·职场和发展
爱吃生蚝的于勒44 分钟前
【Linux】进程间通信之匿名管道
linux·运维·服务器·c语言·数据结构·c++·vim
寻星探路1 小时前
【算法专题】哈希表:从“两数之和”到“最长连续序列”的深度解析
java·数据结构·人工智能·python·算法·ai·散列表