LeetCode //C - 212. Word Search II

Given an m x n board of characters and a list of strings words , return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:
  • m == board.length
  • n == board[i].length
  • 1 <= m, n <= 12
  • board[i][j] is a lowercase English letter.
  • 1 <= words.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
  • 1 <= words[i].length <= 10
  • words[i] consists of lowercase English letters.
  • All the strings of words are unique.

From: LeetCode

Link: 212. Word Search II


Solution:

Ideas:

Trie (Prefix Tree):

A Trie is a tree-like data structure that is used to store a dynamic set of strings. Tries are particularly useful for searches in dictionaries with a large number of words. Each node of the Trie represents a single character of a word, and the path from the root node to any node in the tree represents the prefix (part of a word) associated with that node.

Benefits of Trie:

  1. Provides efficient word insertions and lookups.
  2. Allows us to search for a word prefix efficiently.

DFS Backtracking:

Backtracking is a general algorithm used to find all (or some) solutions to computational problems by incrementally building candidates towards solutions and abandoning a candidate as soon as it is determined that it cannot be extended to a valid solution.

In the context of this problem, we use backtracking to traverse the board starting from each cell. For each cell, we explore in all four possible directions (up, down, left, right) to see if we can form a word present in the Trie.

Solution Steps:

  1. Building the Trie:
  • All the words in the words array are inserted into a Trie.
  • Each node in the Trie has 26 pointers (for each lowercase English letter) and a word pointer which points to the word if that node marks the end of a valid word.
  1. DFS Search on Board:
  • We iterate over each cell of the board.
  • Starting from each cell, we perform a DFS search to build words and check if they are in the Trie.
  • While traversing, if the current sequence of characters doesn't match any prefix in the Trie, we backtrack (return from the recursion).
  • If we find a valid word (by reaching a Trie node that has a non-null word pointer), we add that word to the results.
  1. Optimization:
  • Once a word is found, we nullify the word pointer in the Trie node to ensure that the same word is not added multiple times.
Code:
c 复制代码
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

typedef struct TrieNode {
    struct TrieNode *children[26];
    char *word;
} TrieNode;

TrieNode* createNode() {
    TrieNode *node = malloc(sizeof(TrieNode));
    for (int i = 0; i < 26; i++) {
        node->children[i] = NULL;
    }
    node->word = NULL;
    return node;
}

void insert(TrieNode *root, char *word) {
    TrieNode *node = root;
    for (int i = 0; word[i]; i++) {
        int index = word[i] - 'a';
        if (!node->children[index]) {
            node->children[index] = createNode();
        }
        node = node->children[index];
    }
    node->word = word;
}

void backtrack(char **board, int boardSize, int* boardColSize, TrieNode *node, int i, int j, char **result, int *returnSize) {
    if (i < 0 || i >= boardSize || j < 0 || j >= boardColSize[i] || board[i][j] == '#') {
        return;
    }
    
    char c = board[i][j];
    if (!node->children[c - 'a']) {
        return;
    }

    node = node->children[c - 'a'];
    if (node->word) {
        result[*returnSize] = node->word;
        (*returnSize)++;
        node->word = NULL; // To avoid duplication
    }

    board[i][j] = '#';  // Mark as visited
    backtrack(board, boardSize, boardColSize, node, i+1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i-1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j+1, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j-1, result, returnSize);
    board[i][j] = c;    // Revert back
}

char** findWords(char** board, int boardSize, int* boardColSize, char **words, int wordsSize, int* returnSize) {
    TrieNode *root = createNode();
    for (int i = 0; i < wordsSize; i++) {
        insert(root, words[i]);
    }
    
    char **result = malloc(wordsSize * sizeof(char*));
    *returnSize = 0;

    for (int i = 0; i < boardSize; i++) {
        for (int j = 0; j < boardColSize[i]; j++) {
            backtrack(board, boardSize, boardColSize, root, i, j, result, returnSize);
        }
    }

    return result;
}
相关推荐
weixin_307779131 小时前
使用Python高效读取ZIP压缩文件中的UTF-8 JSON数据到Pandas和PySpark DataFrame
开发语言·python·算法·自动化·json
柳安忆1 小时前
【论文阅读】Sparks of Science
算法
web安全工具库2 小时前
从课堂笔记到实践:深入理解Linux C函数库的奥秘
java·数据库·算法
爱编程的鱼3 小时前
C# 变量详解:从基础概念到高级应用
java·算法·c#
tkevinjd3 小时前
反转链表及其应用(力扣2130)
数据结构·leetcode·链表
HalvmånEver3 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
哆啦刘小洋4 小时前
T:堆的基本介绍
算法
AresXue4 小时前
你是否也在寻找二进制和字符串的高效转换算法?
算法
Swift社区4 小时前
从 0 到 1 构建一个完整的 AGUI 前端项目的流程在 ESP32 上运行
前端·算法·职场和发展
RTC老炮5 小时前
webrtc弱网-BitrateEstimator类源码分析与算法原理
网络·人工智能·算法·机器学习·webrtc