LeetCode //C - 212. Word Search II

Given an m x n board of characters and a list of strings words , return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:
  • m == board.length
  • n == board[i].length
  • 1 <= m, n <= 12
  • board[i][j] is a lowercase English letter.
  • 1 <= words.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
  • 1 <= words[i].length <= 10
  • words[i] consists of lowercase English letters.
  • All the strings of words are unique.

From: LeetCode

Link: 212. Word Search II


Solution:

Ideas:

Trie (Prefix Tree):

A Trie is a tree-like data structure that is used to store a dynamic set of strings. Tries are particularly useful for searches in dictionaries with a large number of words. Each node of the Trie represents a single character of a word, and the path from the root node to any node in the tree represents the prefix (part of a word) associated with that node.

Benefits of Trie:

  1. Provides efficient word insertions and lookups.
  2. Allows us to search for a word prefix efficiently.

DFS Backtracking:

Backtracking is a general algorithm used to find all (or some) solutions to computational problems by incrementally building candidates towards solutions and abandoning a candidate as soon as it is determined that it cannot be extended to a valid solution.

In the context of this problem, we use backtracking to traverse the board starting from each cell. For each cell, we explore in all four possible directions (up, down, left, right) to see if we can form a word present in the Trie.

Solution Steps:

  1. Building the Trie:
  • All the words in the words array are inserted into a Trie.
  • Each node in the Trie has 26 pointers (for each lowercase English letter) and a word pointer which points to the word if that node marks the end of a valid word.
  1. DFS Search on Board:
  • We iterate over each cell of the board.
  • Starting from each cell, we perform a DFS search to build words and check if they are in the Trie.
  • While traversing, if the current sequence of characters doesn't match any prefix in the Trie, we backtrack (return from the recursion).
  • If we find a valid word (by reaching a Trie node that has a non-null word pointer), we add that word to the results.
  1. Optimization:
  • Once a word is found, we nullify the word pointer in the Trie node to ensure that the same word is not added multiple times.
Code:
c 复制代码
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

typedef struct TrieNode {
    struct TrieNode *children[26];
    char *word;
} TrieNode;

TrieNode* createNode() {
    TrieNode *node = malloc(sizeof(TrieNode));
    for (int i = 0; i < 26; i++) {
        node->children[i] = NULL;
    }
    node->word = NULL;
    return node;
}

void insert(TrieNode *root, char *word) {
    TrieNode *node = root;
    for (int i = 0; word[i]; i++) {
        int index = word[i] - 'a';
        if (!node->children[index]) {
            node->children[index] = createNode();
        }
        node = node->children[index];
    }
    node->word = word;
}

void backtrack(char **board, int boardSize, int* boardColSize, TrieNode *node, int i, int j, char **result, int *returnSize) {
    if (i < 0 || i >= boardSize || j < 0 || j >= boardColSize[i] || board[i][j] == '#') {
        return;
    }
    
    char c = board[i][j];
    if (!node->children[c - 'a']) {
        return;
    }

    node = node->children[c - 'a'];
    if (node->word) {
        result[*returnSize] = node->word;
        (*returnSize)++;
        node->word = NULL; // To avoid duplication
    }

    board[i][j] = '#';  // Mark as visited
    backtrack(board, boardSize, boardColSize, node, i+1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i-1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j+1, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j-1, result, returnSize);
    board[i][j] = c;    // Revert back
}

char** findWords(char** board, int boardSize, int* boardColSize, char **words, int wordsSize, int* returnSize) {
    TrieNode *root = createNode();
    for (int i = 0; i < wordsSize; i++) {
        insert(root, words[i]);
    }
    
    char **result = malloc(wordsSize * sizeof(char*));
    *returnSize = 0;

    for (int i = 0; i < boardSize; i++) {
        for (int j = 0; j < boardColSize[i]; j++) {
            backtrack(board, boardSize, boardColSize, root, i, j, result, returnSize);
        }
    }

    return result;
}
相关推荐
lkbhua莱克瓦2428 分钟前
Java基础——常用算法3
java·数据结构·笔记·算法·github·排序算法·学习方法
小白程序员成长日记29 分钟前
2025.11.07 力扣每日一题
数据结构·算法·leetcode
·白小白31 分钟前
力扣(LeetCode) ——209. 长度最小的子数组(C++)
c++·算法·leetcode
小猪咪piggy33 分钟前
【算法】day16 动态规划
算法·动态规划
ohnoooo934 分钟前
251106 算法
数据结构·c++·算法
uesowys1 小时前
华为OD算法开发指导-简易内存池
java·算法·华为od
Greedy Alg1 小时前
LeetCode 155. 最小栈
算法
雾岛听蓝1 小时前
算法复杂度解析:时间与空间的衡量
c语言·数据结构·经验分享·笔记
小白程序员成长日记1 小时前
2025.11.08 力扣每日一题
算法·leetcode·职场和发展
Nebula_g2 小时前
C语言应用实例:学生管理系统1(指针、结构体综合应用,动态内存分配)
c语言·开发语言·学习·算法·基础