LeetCode //C - 212. Word Search II

Given an m x n board of characters and a list of strings words , return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:
  • m == board.length
  • n == board[i].length
  • 1 <= m, n <= 12
  • board[i][j] is a lowercase English letter.
  • 1 <= words.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
  • 1 <= words[i].length <= 10
  • words[i] consists of lowercase English letters.
  • All the strings of words are unique.

From: LeetCode

Link: 212. Word Search II


Solution:

Ideas:

Trie (Prefix Tree):

A Trie is a tree-like data structure that is used to store a dynamic set of strings. Tries are particularly useful for searches in dictionaries with a large number of words. Each node of the Trie represents a single character of a word, and the path from the root node to any node in the tree represents the prefix (part of a word) associated with that node.

Benefits of Trie:

  1. Provides efficient word insertions and lookups.
  2. Allows us to search for a word prefix efficiently.

DFS Backtracking:

Backtracking is a general algorithm used to find all (or some) solutions to computational problems by incrementally building candidates towards solutions and abandoning a candidate as soon as it is determined that it cannot be extended to a valid solution.

In the context of this problem, we use backtracking to traverse the board starting from each cell. For each cell, we explore in all four possible directions (up, down, left, right) to see if we can form a word present in the Trie.

Solution Steps:

  1. Building the Trie:
  • All the words in the words array are inserted into a Trie.
  • Each node in the Trie has 26 pointers (for each lowercase English letter) and a word pointer which points to the word if that node marks the end of a valid word.
  1. DFS Search on Board:
  • We iterate over each cell of the board.
  • Starting from each cell, we perform a DFS search to build words and check if they are in the Trie.
  • While traversing, if the current sequence of characters doesn't match any prefix in the Trie, we backtrack (return from the recursion).
  • If we find a valid word (by reaching a Trie node that has a non-null word pointer), we add that word to the results.
  1. Optimization:
  • Once a word is found, we nullify the word pointer in the Trie node to ensure that the same word is not added multiple times.
Code:
c 复制代码
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */

typedef struct TrieNode {
    struct TrieNode *children[26];
    char *word;
} TrieNode;

TrieNode* createNode() {
    TrieNode *node = malloc(sizeof(TrieNode));
    for (int i = 0; i < 26; i++) {
        node->children[i] = NULL;
    }
    node->word = NULL;
    return node;
}

void insert(TrieNode *root, char *word) {
    TrieNode *node = root;
    for (int i = 0; word[i]; i++) {
        int index = word[i] - 'a';
        if (!node->children[index]) {
            node->children[index] = createNode();
        }
        node = node->children[index];
    }
    node->word = word;
}

void backtrack(char **board, int boardSize, int* boardColSize, TrieNode *node, int i, int j, char **result, int *returnSize) {
    if (i < 0 || i >= boardSize || j < 0 || j >= boardColSize[i] || board[i][j] == '#') {
        return;
    }
    
    char c = board[i][j];
    if (!node->children[c - 'a']) {
        return;
    }

    node = node->children[c - 'a'];
    if (node->word) {
        result[*returnSize] = node->word;
        (*returnSize)++;
        node->word = NULL; // To avoid duplication
    }

    board[i][j] = '#';  // Mark as visited
    backtrack(board, boardSize, boardColSize, node, i+1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i-1, j, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j+1, result, returnSize);
    backtrack(board, boardSize, boardColSize, node, i, j-1, result, returnSize);
    board[i][j] = c;    // Revert back
}

char** findWords(char** board, int boardSize, int* boardColSize, char **words, int wordsSize, int* returnSize) {
    TrieNode *root = createNode();
    for (int i = 0; i < wordsSize; i++) {
        insert(root, words[i]);
    }
    
    char **result = malloc(wordsSize * sizeof(char*));
    *returnSize = 0;

    for (int i = 0; i < boardSize; i++) {
        for (int j = 0; j < boardColSize[i]; j++) {
            backtrack(board, boardSize, boardColSize, root, i, j, result, returnSize);
        }
    }

    return result;
}
相关推荐
-dzk-12 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
风筝在晴天搁浅13 小时前
hot100 78.子集
java·算法
Jasmine_llq13 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
超级大只老咪13 小时前
快速进制转换
笔记·算法
m0_7066532313 小时前
C++编译期数组操作
开发语言·c++·算法
故事和你9113 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口
qq_4232339014 小时前
C++与Python混合编程实战
开发语言·c++·算法
TracyCoder12314 小时前
LeetCode Hot100(19/100)——206. 反转链表
算法·leetcode
m0_7155753414 小时前
分布式任务调度系统
开发语言·c++·算法