Langchain-Chatchat项目:1.1-ChatGLM2项目整体介绍

ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第2代版本,引入新的特性包括更长的上下文(基于FlashAttention技术,将基座模型的上下文长度由ChatGLM-6B的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练);更高效的推理(基于Multi-QueryAttention技术,ChatGLM2-6B有更高效的推理速度和更低的显存占用)。

1.环境安装

下载仓库并安装依赖,如下所示:

复制代码
git clone https://github.com/THUDM/ChatGLM2-6B
cd ChatGLM2-6B
pip install -r requirements.txt

2.代码调用

通过如下代码调用 ChatGLM2-6B 模型来生成对话:

复制代码
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
>>> print(response)
晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:

1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。

如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。

3.从本地加载模型

从Hugging Face Hub下载模型需要先安装Git LFS,然后执行命令:

复制代码
git clone https://huggingface.co/THUDM/chatglm2-6b

将模型下载到本地之后,将以上代码中的THUDM/chatglm2-6b替换为你本地的chatglm2-6b文件夹的路径,即可从本地加载模型。

4.网页版Demo

通过命令python web_demo.py启动基于Gradio的网页版demo:

通过命令streamlit run web_demo2.py启动基于Streamlit的网页版demo。网页版demo会运行一个Web Server,并输出地址。在浏览器中打开输出的地址即可使用。经测试,基于Streamlit的网页版Demo会更流畅。

5.命令行Demo

运行命令python cli_demo.py,程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入clear可以清空对话历史,输入stop终止程序。

6.API部署

首先需要安装额外的依赖pip install fastapi uvicorn,然后运行仓库中的api.py

复制代码
python api.py

默认部署在本地的8000端口,通过POST方法进行调用:

复制代码
curl -X POST "http://127.0.0.1:8000" \
     -H 'Content-Type: application/json' \
     -d '{"prompt": "你好", "history": []}'

得到的返回值为:

复制代码
{
  "response":"你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。",
  "history":[["你好","你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。"]],
  "status":200,
  "time":"2023-03-23 21:38:40"
}

参考文献:

1\]ChatGLM2-6B:https://github.com/THUDM/ChatGLM2-6B \[2\]ChatGLM2-6B-32K模型:https://huggingface.co/THUDM/chatglm2-6b-32k \[3\]https://huggingface.co/THUDM/chatglm2-6b

相关推荐
胡乱编胡乱赢1 分钟前
联邦学习中Decaf攻击的具体实现流程
深度学习·机器学习·联邦学习·decaf攻击·decaf攻击具体实现流程·数学分解
木棉知行者5 分钟前
【第5篇】InceptionNeXT(CVPR2024):融合 Inception 思想与现代 CNN 设计的高效特征提取架构
人工智能·深度学习·计算机视觉·cnn
补三补四19 分钟前
参数优化—序列神经网络
人工智能·深度学习·神经网络
呲溜滑_25 分钟前
langchain(node.js)输出解析器
langchain·node.js
海边夕阳20068 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
赵得C13 小时前
深度学习中的梯度问题与激活函数选择:从理论到实践
人工智能·深度学习
金融小师妹14 小时前
基于LSTM-GARCH混合模型:降息预期驱动金价攀升,白银刷新历史峰值的蒙特卡洛模拟验证
大数据·人工智能·深度学习·1024程序员节
晨非辰14 小时前
算法闯关日记 Episode :解锁链表「环形」迷局与「相交」奥秘
数据结构·c++·人工智能·后端·python·深度学习·神经网络
沛沛老爹14 小时前
AI入门之LangChain Agent工具链组合设计:从理论到产业落地的AI智能体架构指南
人工智能·架构·langchain·agent·ai入门
Dr_哈哈15 小时前
LangChain Tools —— 让 AI 拥有「双手」
langchain·node.js·ai编程