[PyTorch][chapter 57][WGAN-GP 代码实现]

前言:

下图为WGAN 的效果图:

绿色为真实数据的分布: 8个高斯分布

红色: 为随机产生的数据分布,跟真实分布基本一致

WGAN-GP:

1 判别器D: 最后一层去掉sigmoid

2 生成器G 和判别器D: loss不取log

3 损失函数 增加了penalty,使用Adam

Wasserstein GAN

1 判别器D: 最后一层去掉sigmoid

2 生成器G 和判别器D: loss不取log

3 每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c
4 不要用基于动量的优化算法(包括momentum和Adam) ,推荐RMSProp,SGD也行


一 简介

1.1 模型结构

1.2 伪代码


wgan.py

主要变化:

Generator 中 去掉了之前的logit 函数

复制代码
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 28 11:10:19 2023

@author: chengxf2
"""

import torch
from   torch import nn



#生成器模型
h_dim = 400
class Generator(nn.Module):
    
    def __init__(self):
        
        super(Generator,self).__init__()
        # z: [batch,input_features]
       
        self.net = nn.Sequential(
            nn.Linear(2, h_dim),
            nn.ReLU(True),
            nn.Linear( h_dim, h_dim),
            nn.ReLU(True),
            nn.Linear(h_dim, h_dim),
            nn.ReLU(True),
            nn.Linear(h_dim, 2)
            )
        
    def forward(self, z):
        
        output = self.net(z)
        return output
    
#鉴别器模型
class Discriminator(nn.Module):
    
    def __init__(self):
        
        super(Discriminator,self).__init__()
        
        hDim=400
        # x: [batch,input_features]
        self.net = nn.Sequential(
            nn.Linear(2, hDim),
            nn.ReLU(True),
            nn.Linear(hDim, hDim),
            nn.ReLU(True),
            nn.Linear(hDim, hDim),
            nn.ReLU(True),
            nn.Linear(hDim, 1),
            )
        
    def forward(self, x):
        
        #x:[batch,1]
        output = self.net(x)
        
        out = output.view(-1)
        return out

main.py

主要变化:

损失函数中增加了gradient_penalty

复制代码
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 28 11:28:32 2023

@author: chengxf2
"""


import visdom
from gan  import  Discriminator
from gan  import Generator
import numpy as np
import random
import torch
from   torch import nn, optim
from    matplotlib import pyplot as plt
from torch import autograd


h_dim =400
batchsz = 256
viz = visdom.Visdom()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")



def weights_init(net):
   if isinstance(net, nn.Linear):
         # net.weight.data.normal_(0.0, 0.02)
         nn.init.kaiming_normal_(net.weight)
         net.bias.data.fill_(0)

def data_generator():
    """
    8- gaussian destribution

    Returns
    -------
    None.

    """
    scale = 2
    a = np.sqrt(2.0)
    centers =[
         (1,0),
         (-1,0),
         (0,1),
         (0,-1),
         (1/a,1/a),
         (1/a,-1/a),
         (-1/a, 1/a),
         (-1/a,-1/a)
        ]
    
    centers = [(scale*x, scale*y) for x,y in centers]
    
    while True:
        
         dataset =[]
         
         for i in range(batchsz):
             
             point = np.random.randn(2)*0.02
             center = random.choice(centers)
             point[0] += center[0]
             point[1] += center[1]
             dataset.append(point)
         dataset = np.array(dataset).astype(np.float32)
         dataset /=a
         #生成器函数是一个特殊的函数,可以返回一个迭代器
         yield dataset


def generate_image(D, G, xr, epoch):      #xr表示真实的sample
    """
    Generates and saves a plot of the true distribution, the generator, and the
    critic.
    """
    N_POINTS = 128
    RANGE = 3
    plt.clf()

    points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32')
    points[:, :, 0] = np.linspace(-RANGE, RANGE, N_POINTS)[:, None]
    points[:, :, 1] = np.linspace(-RANGE, RANGE, N_POINTS)[None, :]
    points = points.reshape((-1, 2))             # (16384, 2)
    x = y = np.linspace(-RANGE, RANGE, N_POINTS)
    N = len(x)
    # draw contour
    with torch.no_grad():
        points = torch.Tensor(points)      # [16384, 2]
        disc_map = D(points).cpu().numpy() # [16384]
   
    plt.contour(x, y, disc_map.reshape((N, N)).transpose())
    #plt.clabel(cs, inline=1, fontsize=10)
    plt.colorbar()


    # draw samples
    with torch.no_grad():
        z = torch.randn(batchsz, 2)                 # [b, 2]
        samples = G(z).cpu().numpy()                # [b, 2]
    plt.scatter(xr[:, 0], xr[:, 1], c='green', marker='.')
    plt.scatter(samples[:, 0], samples[:, 1], c='red', marker='+')

    viz.matplot(plt, win='contour', opts=dict(title='p(x):%d'%epoch))
    

def gradient_penalty(D, xr,xf):

    #[b,1]
    t =  torch.rand(batchsz, 1).to(device)       
    #[b,1]=>[b,2]  保证每个sample t 相同
    t =  t.expand_as(xr)
    
    #sample penalty interpoation [b,2]
    mid = t*xr +(1-t)*xf
    mid.requires_grad_()
    
    pred = D(mid) #[256]
   
    '''
    grad_outputs:   如果outputs 是向量,则此参数必须写
    retain_graph:  True 则保留计算图, False则释放计算图
    create_graph: 若要计算高阶导数,则必须选为True
    allow_unused: 允许输入变量不进入计算
    '''
    grads = autograd.grad(outputs= pred, inputs = mid,
                      grad_outputs= torch.ones_like(pred),
                      create_graph=True,
                      retain_graph=True,
                      only_inputs=True)[0]
    
    gp = torch.pow(grads.norm(2, dim=1)-1,2).mean()
    
    return gp
    
    
    
    
    
    
         
def main():
  
    lambd = 0.2 #超参数
    maxIter = 1000
    torch.manual_seed(10)
    np.random.seed(10)
    data_iter  = data_generator()
    
   
    G = Generator().to(device)
    D = Discriminator().to(device)
    G.apply(weights_init)
    D.apply(weights_init)
    optim_G = optim.Adam(G.parameters(),lr =5e-4, betas=(0.5,0.9))
    optim_D = optim.Adam(D.parameters(),lr =5e-4, betas=(0.5,0.9))
    K = 5
 
    

    
   
    viz.line([[0,0]], [0], win='loss', opts=dict(title='loss', legend=['D', 'G']))

    for epoch in range(maxIter):
        
        #1: train Discrimator fistly
        for k in range(K):
            
            #1.1: train on real data
            xr = next(data_iter)
            xr = torch.from_numpy(xr).to(device)
            predr = D(xr)
            
       
            #max(predr) == min(-predr)
            lossr = -predr.mean()
            
            
            #1.2: train on fake data
            z = torch.randn(batchsz,2).to(device) #[b,2] 随机产生的噪声
            xf = G(z).detach() #固定G,不更新G参数 tf.stop_gradient()
            predf =D(xf)
            lossf = predf.mean()
            
            #1.3 gradient_penalty
            gp = gradient_penalty(D, xr,xf.detach())
            
            #aggregate all
            loss_D = lossr + lossf +lambd*gp
            
            optim_D.zero_grad()
            loss_D.backward()
            optim_D.step()
            #print("\n Discriminator 训练结束 ",loss_D.item())
        
        # 2 train  Generator
        
        #2.1 train on fake data
        z = torch.randn(batchsz, 2).to(device)
        xf = G(z)
        predf =D(xf) #期望最大
        loss_G= -predf.mean()
        
        #optimize
        optim_G.zero_grad()
        loss_G.backward()
        optim_G.step()
        
        if epoch %100 ==0:
            viz.line([[loss_D.item(), loss_G.item()]], [epoch], win='loss', update='append')
            generate_image(D, G, xr, epoch)
            print("\n epoch: %d"%epoch,"\t lossD: %7.4f"%loss_D.item(),"\t lossG: %7.4f"%loss_G.item())
         
        
 

    
    
    

if __name__ == "__main__":
    
    main()

参考:

课时130 WGAN-GP实战_哔哩哔哩_bilibili

WGAN基本原理及Pytorch实现WGAN-CSDN博客

CSDN

相关推荐
老鱼说AI几秒前
论文精读第五期:V-STAR提高复杂推理能力
大数据·人工智能·深度学习·神经网络·机器学习·语言模型
嘛嘛嘛嘛嘛嘛嘛嘛嘛几秒前
Nanobrowser安装使用
人工智能·自动化
Java程序员威哥2 分钟前
Spring AI快速上手:Java集成ChatGPT/文心一言,30分钟实现智能问答接口
java·人工智能·spring boot·后端·python·spring·云原生
C系语言2 分钟前
Anaconda虚拟环境,完全使用conda install命令安装所有包,使用conda install pytorch
人工智能·pytorch·conda
jkyy20143 分钟前
AI赋能健康新生态:HealthAgent开放平台重构B端服务价值
大数据·人工智能·健康医疗
GIOTTO情3 分钟前
2026 舆情监测技术选型指南:Infoseek 基于 AI 大模型的全链路技术落地解析
人工智能
愚公搬代码3 分钟前
【愚公系列】《AI+直播营销》036-直播间装修和布置(直播间装修和布置的5个场景)
人工智能
VertGrow AI销冠3 分钟前
AI在吸引客户和引流方面的实际效果和应用研究
人工智能
快乐非自愿4 分钟前
AI低代码与智改数转:破除伪命题,重构技术落地逻辑
人工智能·低代码·重构
新加坡内哥谈技术11 分钟前
大型语言模型与软件开发职业
人工智能