Haar cascade+opencv检测算法

Harr特征识别人脸

Haar cascade + opencv步骤

  1. 读取包含人脸的图片
  2. 使用haar模型识别人脸
  3. 将识别的结果用矩形框画出来
  • 构造haar检测器 :cv2.CascadeClassifier('具体检测模型文件')
python 复制代码
# 构造Haar检测器 
# 级联分级机,cv2.CascadeClassifier():cv2的内置方法,创建一检测器
# haarcascade_frontalface_default.xml:正脸检测模型
face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
  • 将图像转成灰度图像
python 复制代码
# 转成灰度图
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
  • 检测: face_detector.detectMultiScale(img_gray)方法进行检测
python 复制代码
# face_detector.detectMultiScale(img_gray)方法进行检测
# 检测结果,人脸的位置,二维数组
detections = face_detector.detectMultiScale(img_gray)
  • 输出结果
python 复制代码
# 打印结果
detections
# [ 284,  263,  113,  113]:[x,y,w,h],(x,y):左上角坐标,(w,h)检测到人脸的尺寸:从左上角向右和向下开始延申的宽度和高度

将识别的结果用矩形框画出来

  • 绘制图像
python 复制代码
# for循环迭代检测的元组,并画上矩形
for (x,y,w,h) in detections:
    # print((x,y,w,h))
    # 画矩形                          img:BGR
    cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,255,0),thickness=10)
  • 显示绘制结果
python 复制代码
# 显示绘制结果
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

DetectMultiScale()方法参数调试

参数:

scaleFactor:【距离】调整图片尺寸,值越大,相当于镜头拉大

minNeighbors:【质量】人脸候选数量:候选值越大,则检测的越少

minSize:去掉的最小人脸尺寸大小(w,h)

maxSize:去掉的最大人脸尺寸大小(w,h)

相关推荐
WBluuue38 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
RPA+AI十二工作室1 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘4 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3124 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降4 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法
猿榜4 小时前
Python基础-控制结构
python