Haar cascade+opencv检测算法

Harr特征识别人脸

Haar cascade + opencv步骤

  1. 读取包含人脸的图片
  2. 使用haar模型识别人脸
  3. 将识别的结果用矩形框画出来
  • 构造haar检测器 :cv2.CascadeClassifier('具体检测模型文件')
python 复制代码
# 构造Haar检测器 
# 级联分级机,cv2.CascadeClassifier():cv2的内置方法,创建一检测器
# haarcascade_frontalface_default.xml:正脸检测模型
face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
  • 将图像转成灰度图像
python 复制代码
# 转成灰度图
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
  • 检测: face_detector.detectMultiScale(img_gray)方法进行检测
python 复制代码
# face_detector.detectMultiScale(img_gray)方法进行检测
# 检测结果,人脸的位置,二维数组
detections = face_detector.detectMultiScale(img_gray)
  • 输出结果
python 复制代码
# 打印结果
detections
# [ 284,  263,  113,  113]:[x,y,w,h],(x,y):左上角坐标,(w,h)检测到人脸的尺寸:从左上角向右和向下开始延申的宽度和高度

将识别的结果用矩形框画出来

  • 绘制图像
python 复制代码
# for循环迭代检测的元组,并画上矩形
for (x,y,w,h) in detections:
    # print((x,y,w,h))
    # 画矩形                          img:BGR
    cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,255,0),thickness=10)
  • 显示绘制结果
python 复制代码
# 显示绘制结果
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

DetectMultiScale()方法参数调试

参数:

scaleFactor:【距离】调整图片尺寸,值越大,相当于镜头拉大

minNeighbors:【质量】人脸候选数量:候选值越大,则检测的越少

minSize:去掉的最小人脸尺寸大小(w,h)

maxSize:去掉的最大人脸尺寸大小(w,h)

相关推荐
程序员爱钓鱼1 小时前
Python 实战:如何读取多格式 Excel 并实现跨表匹配合并(支持 XLS / XLSX)
后端·python·面试
yolo_guo1 小时前
opencv 学习: QA_02 什么是图像中的高频成分和低频成分
linux·c++·opencv·计算机视觉
算法与编程之美1 小时前
探索不同的优化器、损失函数、batch_size对分类精度影响
人工智能·机器学习·计算机视觉·分类·batch
程序员爱钓鱼1 小时前
Python编程实战:实现一个 Excel 批量处理工具(桌面实用脚本)
后端·python·ipython
Solyn_HAN1 小时前
Python 生信进阶:Biopython 库完全指南(序列处理 + 数据库交互)
python·生物信息学·biopython
九河_2 小时前
解决pip install gym==0.19.0安装失败问题
开发语言·python·pip·gym
AI科技星2 小时前
引力编程时代:人类文明存续与升维
数据结构·人工智能·经验分享·算法·计算机视觉
iamohenry4 小时前
古早味的心理咨询聊天机器人
python·自然语言处理
Blossom.1187 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
轻微的风格艾丝凡7 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn