DeepFace【部署 03】轻量级人脸识别和面部属性分析框架deepface在Linux环境下服务部署(conda虚拟环境+docker)

Linux环境下服务部署

1.使用虚拟环境[810ms]

1.1 环境部署

Anaconda的安装步骤这里不再介绍,直接开始使用。

bash 复制代码
# 1.创建虚拟环境
conda create -n deepface python=3.9.18

# 2.激活虚拟环境
conda activate deepface

# 3.安装deepface
pip install deepface -i https://pypi.tuna.tsinghua.edu.cn/simple

以下操作在虚拟环境deepface下执行:

bash 复制代码
# 1.安装mesa-libGL.x86_64
yum install mesa-libGL.x86_64
# 防止报错
ImportError: libGL.so.1: cannot open shared object file: No such file or directory

# 2.安装deprecated
pip install deprecated==1.2.13
# 防止报错
ModuleNotFoundError: No module named 'deprecated'

使用yum install mesa-libGL.x86_64命令会在Linux系统中安装mesa-libGL包。这个包包含了Mesa 3D图形库的运行时库和DRI驱动。安装mesa-libGL包后,系统将能够支持OpenGL,这是一种用于渲染2D和3D矢量图形的跨语言、跨平台的应用程序编程接口(API)。

1.2 服务启动

DeepFace serves an API as well. You can clone [/api](https://github.com/serengil/deepface/tree/master/api) folder and run the api via gunicorn server. This will get a rest service up. In this way, you can call deepface from an external system such as mobile app or web.

bash 复制代码
cd scripts
./service.sh

Linux系统使用这个命令是前台启动,实际的启动用的是shell脚本,内容如下:

shell 复制代码
#!/bin/bash
nohup python -u ./api/api.py > ./deepfacelog.out 2>&1 &

Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Default service endpoints will be http://localhost:5000/verify for face recognition, http://localhost:detector_backend for facial attribute analysis, and http://localhost:5000/represent for vector representation. You can pass input images as exact image paths on your environment, base64 encoded strings or images on web. Here, you can find a postman project to find out how these methods should be called.

这里仅贴出如何传递base64进行接口调用:

json 复制代码
{
    "img_path": "data:image/,image_base64_str"
}

仅看一下base64相关源码:

python 复制代码
def load_image(img):
    # The image is a base64 string
    if img.startswith("data:image/"):
        return loadBase64Img(img)

def loadBase64Img(uri):
    encoded_data = uri.split(",")[1]
    nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
    img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
    return img

2.使用Docker[680ms]

You can deploy the deepface api on a kubernetes cluster with docker. The following shell script will serve deepface on localhost:5000. You need to re-configure the Dockerfile if you want to change the port. Then, even if you do not have a development environment, you will be able to consume deepface services such as verify and analyze. You can also access the inside of the docker image to run deepface related commands. Please follow the instructions in the shell script.

修改Dockerfile,调整镜像库:

bash 复制代码
# base image
FROM python:3.8
LABEL org.opencontainers.image.source https://github.com/serengil/deepface
# -----------------------------------
# create required folder
RUN mkdir /app
RUN mkdir /app/deepface
# -----------------------------------
# Copy required files from repo into image
COPY ./deepface /app/deepface
COPY ./api/app.py /app/
COPY ./api/routes.py /app/
COPY ./api/service.py /app/
COPY ./requirements.txt /app/
COPY ./setup.py /app/
COPY ./README.md /app/
# -----------------------------------
# switch to application directory
WORKDIR /app
# -----------------------------------
# update image os
RUN apt-get update
RUN apt-get install ffmpeg libsm6 libxext6 -y
# -----------------------------------
# if you will use gpu, then you should install tensorflow-gpu package
# RUN pip install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org tensorflow-gpu
# -----------------------------------
# install deepface from pypi release (might be out-of-the-date)
RUN pip install deepface -i https://pypi.tuna.tsinghua.edu.cn/simple
# -----------------------------------
# environment variables
ENV PYTHONUNBUFFERED=1
# -----------------------------------
# run the app (re-configure port if necessary)
EXPOSE 5000
CMD ["gunicorn", "--workers=1", "--timeout=3600", "--bind=0.0.0.0:5000", "app:create_app()"]

官网启动命令:

shell 复制代码
cd scripts
./dockerize.sh

报错:

bash 复制代码
unable to prepare context: unable to evaluate symlinks in Dockerfile path: lstat /home/deepface/scripts/Dockerfile: no such file or directory
Unable to find image 'deepface:latest' locally
docker: Error response from daemon: pull access denied for deepface, repository does not exist or may require 'docker login': denied: requested access to the resource is denied.
See 'docker run --help'.

解决【不要 cd scripts】原因是执行脚本的文件夹要跟构建镜像使用的Dockerfile同级:

bash 复制代码
./scripts/dockerize.sh
# 这个过程一共有两个步骤:1是构建镜像;2是启动容器。构建镜像的速度取决于网速【时间可能会比较久】

分解步骤:

bash 复制代码
# 构建镜像
docker build -t deepface_image .

# 创建模型文件夹【并将下载好的模型文件上传】
mkdir -p /root/.deepface/weights/

# 启动容器
docker run --name deepface --privileged=true --restart=always --net="host" -v /root/.deepface/weights/:/root/.deepface/weights/ -d deepface_image
相关推荐
Ronin305几秒前
【Linux网络】应用层自定义协议
linux·网络·应用层·序列化
终焉代码12 分钟前
【Linux】基本指令(入门篇)(下)
linux·运维·服务器
---学无止境---3 小时前
Linux中基数树批量查询数据项相关函数的实现
linux
我也想失去烦恼4 小时前
Linux系统/etc/hosts文件中配置了主机解析,但还是无法解析ip
linux·运维·服务器
deng-c-f6 小时前
Linux C/C++ 学习日记(29):IO密集型与CPU密集型、CPU的调度与线程切换
linux·学习·线程·cpu·io密集·cpu密集
IT_Octopus8 小时前
triton backend 模式docker 部署 pytorch gpu模型 镜像选择
pytorch·docker·triton·模型推理
报错小能手9 小时前
linux学习笔记(43)网络编程——HTTPS (补充)
linux·网络·学习
报错小能手9 小时前
linux学习笔记(45)git详解
linux·笔记·学习
Maple_land9 小时前
常见Linux环境变量深度解析
linux·运维·服务器·c++·centos
wudl556610 小时前
Docker 常用命令
docker·容器·eureka