Sparglim✨: 让PySpark on K8S和Spark Connect Server更简单

简介

发现市面上基本没有对 PySpark 进行配置的工具,同时 Spark 3.4.0 引入了 server-client 模式,也没有比较好的解决方案,我这里开源了一个简单的模块,支持以下功能:

  • 通过环境变量配置 Spark ,参见 config spark
  • 在 IPython/Jupyter 中执行 Spark SQL 的 %SQL%%SQL magic
    • SQL 语句可分多行编写,支持使用 ; 分隔语句
    • 支持配置连接客户端
  • sparglim-server用于创建daemon Spark Connect Server ,并支持 on K8S 部署

快速开始

Run Jupyterlab with sparglim docker image:

bash 复制代码
docker run \
-it \
-p 8888:8888 \
wh1isper/jupyterlab-sparglim

访问 http://localhost:8888 来使用jupyterlab,然后可以试试SQL功能SQL Magic.

Run and Daemon a Spark Connect Server:

bash 复制代码
docker run \
-it \
-p 15002:15002 \
-p 4040:4040 \
wh1isper/sparglim-server

访问 http://localhost:4040 查看Spark-UI并通过sc://localhost:15002连接Spark Connect Server. Use sparglim to setup SparkSession to connect to Spark Connect Server.

用户案例

直接使用:Basic

直接通过代码快速配置SparkSession

sql 复制代码
from sparglim.config.builder import ConfigBuilder
from datetime import datetime, date
from pyspark.sql import Row

# Create a local[*] spark session with s3&kerberos config
spark = ConfigBuilder().get_or_create()

df = spark.createDataFrame([
    Row(a=1, b=2., c='string1', d=date(2000, 1, 1), e=datetime(2000, 1, 1, 12, 0)),
    Row(a=2, b=3., c='string2', d=date(2000, 2, 1), e=datetime(2000, 1, 2, 12, 0)),
    Row(a=4, b=5., c='string3', d=date(2000, 3, 1), e=datetime(2000, 1, 3, 12, 0))
])
df.show()

构建一个PySpark应用: Building a PySpark App

配置PySpark on K8S以支持使用JupyterLab的数据探索任务:examples/jupyter-sparglim-on-k8s

配置PySpark以开发ELT服务:pyspark-sampling

部署Spark Connect Server:Deploy Spark Connect Server on K8S (And Connect to it)

部署Spark on K8S模式下的Spark Connect Server:examples/sparglim-server

部署Spark on K8S模式下的Spark Connect Server,并通过JupyterLab连接它:examples/jupyter-sparglim-sc

连接已有的Spark Connect ServerConnect to Spark Connect Server

只需要配置环境变量 SPARGLIM_REMOTE, 格式为sc://host:port

Example Code:

python 复制代码
import os
os.environ["SPARGLIM_REMOTE"] = "sc://localhost:15002" # or export SPARGLIM_REMOTE=sc://localhost:15002 before run python

from sparglim.config.builder import ConfigBuilder
from datetime import datetime, date
from pyspark.sql import Row


c = ConfigBuilder().config_connect_client()
spark = c.get_or_create()

df = spark.createDataFrame([
    Row(a=1, b=2., c='string1', d=date(2000, 1, 1), e=datetime(2000, 1, 1, 12, 0)),
    Row(a=2, b=3., c='string2', d=date(2000, 2, 1), e=datetime(2000, 1, 2, 12, 0)),
    Row(a=4, b=5., c='string3', d=date(2000, 3, 1), e=datetime(2000, 1, 3, 12, 0))
])
df.show()

SQL Magic

Install Sparglim with

bash 复制代码
pip install sparglim["magic"]

Load magic in IPython/Jupyter

ipython 复制代码
%load_ext sparglim.sql
spark # show SparkSession brief info

Create a view:

python 复制代码
from datetime import datetime, date
from pyspark.sql import Row

df = spark.createDataFrame([
            Row(a=1, b=2., c='string1', d=date(2000, 1, 1), e=datetime(2000, 1, 1, 12, 0)),
            Row(a=2, b=3., c='string2', d=date(2000, 2, 1), e=datetime(2000, 1, 2, 12, 0)),
            Row(a=4, b=5., c='string3', d=date(2000, 3, 1), e=datetime(2000, 1, 3, 12, 0))
        ])
df.createOrReplaceTempView("tb")

Query the view by %SQL:

sql 复制代码
%sql SELECT * FROM tb

%SQL result dataframe can be assigned to a variable:

python 复制代码
df = %sql SELECT * FROM tb
df

or %%SQL can be used to execute multiple statements:

sql 复制代码
%%sql SELECT
        *
        FROM
        tb;

You can also using Spark SQL to load data from external data source, such as:

sql 复制代码
%%sql CREATE TABLE tb_people
USING json
OPTIONS (path "/path/to/file.json");
Show tables;
相关推荐
徐先生 @_@|||12 小时前
Spark DataFrame常见的Transformation和Actions详解
大数据·分布式·spark
走遍西兰花.jpg14 小时前
spark配置
大数据·分布式·spark
亚林瓜子18 小时前
pyspark分组计数
python·spark·pyspark·分组统计
鸿乃江边鸟18 小时前
Spark Datafusion Comet 向量化Rust Native--创建Datafusion计划
rust·spark·native
想你依然心痛18 小时前
Spark大数据分析与实战笔记(第六章 Kafka分布式发布订阅消息系统-03)
笔记·分布式·spark·kafka
王锋(oxwangfeng)19 小时前
Spark 向量化执行引擎技术选型与实践指南
大数据·分布式·spark
小邓睡不饱耶19 小时前
使用Spark进行学生成绩数据深度分析与处理
大数据·分布式·spark
亚林瓜子19 小时前
pyspark添加一列时间戳数据并改名
python·spark
编程彩机1 天前
互联网大厂Java面试:从分布式架构到大数据场景解析
java·大数据·微服务·spark·kafka·分布式事务·分布式架构
Moshow郑锴2 天前
Spark在银行系统ETL中的实战应用:TXT文件到PostgreSQL的余额处理全流程
postgresql·spark·etl