效果
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace 人像卡通化
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
Mat result_image;
int modelSize = 256;
SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
List<NamedOnnxValue> input_ontainer;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
float[] result_array;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
textBox1.Text = "";
pictureBox2.Image = null;
int oldwidth = image.Cols;
int oldheight = image.Rows;
//缩放图片大小
int maxEdge = Math.Max(image.Rows, image.Cols);
float ratio = 1.0f * modelSize / maxEdge;
int newHeight = (int)(image.Rows * ratio);
int newWidth = (int)(image.Cols * ratio);
Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight));
int width = resize_image.Cols;
int height = resize_image.Rows;
if (width != modelSize || height != modelSize)
{
resize_image = resize_image.CopyMakeBorder(0, modelSize - newHeight, 0, modelSize - newWidth, BorderTypes.Constant, new Scalar(255, 255, 255));
}
Cv2.CvtColor(resize_image, resize_image, ColorConversionCodes.BGR2RGB);
// 输入Tensor
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = (resize_image.At<Vec3b>(y, x)[0] / 255f - 0.5f) / 0.5f;
input_tensor[0, 1, y, x] = (resize_image.At<Vec3b>(y, x)[1] / 255f - 0.5f) / 0.5f;
input_tensor[0, 2, y, x] = (resize_image.At<Vec3b>(y, x)[2] / 255f - 0.5f) / 0.5f;
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_ontainer);
dt2 = DateTime.Now;
//将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
//读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
float[] temp_r = new float[256 * 256];
float[] temp_g = new float[256 * 256];
float[] temp_b = new float[256 * 256];
Array.Copy(result_array, temp_r, 256 * 256);
Array.Copy(result_array, 256 * 256, temp_g, 0, 256 * 256);
Array.Copy(result_array, 256 * 256 * 2, temp_b, 0, 256 * 256);
Mat rmat = new Mat(256, 256, MatType.CV_32F, temp_r);
Mat gmat = new Mat(256, 256, MatType.CV_32F, temp_g);
Mat bmat = new Mat(256, 256, MatType.CV_32F, temp_b);
rmat = (rmat + 1f) * 127.5f;
gmat = (gmat + 1f) * 127.5f;
bmat = (bmat + 1f) * 127.5f;
result_image = new Mat();
Cv2.Merge(new Mat[] { rmat, gmat, bmat }, result_image);
if (!result_image.Empty())
{
//还原图像大小
if (width != modelSize || height != modelSize)
{
Rect rect = new Rect(0, 0, width, height);
result_image = result_image.Clone(rect);
}
result_image = result_image.Resize(new OpenCvSharp.Size(oldwidth, oldheight));
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
}
else
{
textBox1.Text = "无信息";
}
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = startupPath + "\\photo2cartoon_weights.onnx";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
// 设置为CPU上运行
options.AppendExecutionProvider_CPU(0);
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 256, 256 });
// 创建输入容器
input_ontainer = new List<NamedOnnxValue>();
}
}
}
说明
1、该例子只是人像转卡通像,转之前需要如下前置处理(为了效果更好)
- 检测人脸及关键点。
- 根据关键点旋转校正人脸。
- 将关键点边界框按固定的比例扩张并裁剪出人脸区域。
- 使用人像分割模型将背景置白。
2、该模型不能用于分割半身像,因为该模型是专用模型,需先裁剪出人脸区域再输入
人像分割参考:
C# PaddleInference.PP-HumanSeg 人像分割 替换背景色-CSDN博客
人脸检测参考:
C# DlibDotNet 人脸识别、人脸68特征点识别、人脸5特征点识别、人脸对齐,三角剖分,人脸特征比对-CSDN博客
3、参考
GitHub - minivision-ai/photo2cartoon-paddle: 人像卡通化探索项目 (photo-to-cartoon translation project)