Meta Semantic Template for Evaluation of Large Language Models

本文是LLM系列文章,针对《Meta Semantic Template for Evaluation of Large Language Models》的翻译。

大型语言模型评估的元语义模板

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(llm)是否真正理解语言的语义,或者只是记住训练数据?最近对LLM潜在数据污染的关注,提高了社会对LLM评估研究的认识。在本文中,我们提出了MSTEMP,一种创建元语义模板来评估llm语义理解能力的方法。MSTEMP的核心不是直接对现有的基准数据集进行评估,而是以现有的数据集为种子生成新的out-of-distribution (OOD)评估集。具体来说,对于给定的句子,MSTEMP利用另一种语言模型来生成新的样本,同时保留其语义。这些新样本被称为原句子的语义模板。然后,MSTEMP通过句子解析和语义模板上的随机单词替换生成评估样本。MSTEMP具有高度的灵活性、动态性和成本效益。我们的初步实验表明,mstemp生成的样本可以显著降低使用现有数据集作为种子的llm的性能。我们希望这一初步工作能够对LLM评价的未来研究有所启发。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种基于给定种子数据集生成语义保持样本的llm评估方法MSTEMP。MSTEMP有可能通过使用额外的评估器LMs和替换模板中的单词来生成OOD样本,从而减少数据污染的可能性。我们希望这一初步工作能够分享我们对LLM评估研究的一些最新发现,并启发未来的新方法。

相关推荐
CS_木成河几秒前
【深度学习】预训练和微调概述
人工智能·深度学习·语言模型·微调·预训练
新加坡内哥谈技术8 分钟前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理
真智AI33 分钟前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
OpenBuild.xyz38 分钟前
我是如何从 0 到 1 找到 Web3 工作的?
人工智能·web3·去中心化·区块链·智能合约
Sui_Network38 分钟前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链
ZKNOW甄知科技1 小时前
IT服务运营管理体系的常用方法论与实践指南(上)
大数据·数据库·人工智能
Luke Ewin1 小时前
根据音频中的不同讲述人声音进行分离音频 | 基于ai的说话人声音分离项目
人工智能·python·音视频·语音识别·声纹识别·asr·3d-speaker
終不似少年遊*1 小时前
循环神经网络RNN原理与优化
人工智能·rnn·深度学习·神经网络·lstm
时间很奇妙!1 小时前
CNN 卷积神经网络【更新中】
人工智能·深度学习·cnn
菩提云2 小时前
Deepseek存算分离安全部署手册
人工智能·深度学习·安全·docker·容器