Meta Semantic Template for Evaluation of Large Language Models

本文是LLM系列文章,针对《Meta Semantic Template for Evaluation of Large Language Models》的翻译。

大型语言模型评估的元语义模板

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(llm)是否真正理解语言的语义,或者只是记住训练数据?最近对LLM潜在数据污染的关注,提高了社会对LLM评估研究的认识。在本文中,我们提出了MSTEMP,一种创建元语义模板来评估llm语义理解能力的方法。MSTEMP的核心不是直接对现有的基准数据集进行评估,而是以现有的数据集为种子生成新的out-of-distribution (OOD)评估集。具体来说,对于给定的句子,MSTEMP利用另一种语言模型来生成新的样本,同时保留其语义。这些新样本被称为原句子的语义模板。然后,MSTEMP通过句子解析和语义模板上的随机单词替换生成评估样本。MSTEMP具有高度的灵活性、动态性和成本效益。我们的初步实验表明,mstemp生成的样本可以显著降低使用现有数据集作为种子的llm的性能。我们希望这一初步工作能够对LLM评价的未来研究有所启发。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种基于给定种子数据集生成语义保持样本的llm评估方法MSTEMP。MSTEMP有可能通过使用额外的评估器LMs和替换模板中的单词来生成OOD样本,从而减少数据污染的可能性。我们希望这一初步工作能够分享我们对LLM评估研究的一些最新发现,并启发未来的新方法。

相关推荐
骚戴几秒前
LLM API Gateway:LLM API 架构、AI 聚合与成本优化全解(2025深度指南)
人工智能·python·大模型·llm·gateway·api
牛客企业服务2 分钟前
AI面试:如何从概念真正落地?
人工智能·面试·职场和发展
Macbethad3 分钟前
管理系统开发综合教程:从需求到落地
人工智能·数据库架构
tap.AI5 分钟前
AI物体移除技术:从像素填补到场景重构的演进之路
人工智能·重构
Caesar Zou7 分钟前
Cannot allocate memory——训练时视频解码为什么会内存越跑越大
人工智能·深度学习
再__努力1点8 分钟前
【76】Haar特征的Adaboost级联人脸检测全解析及python实现
开发语言·图像处理·人工智能·python·算法·计算机视觉·人脸检测
IT·小灰灰8 分钟前
AI算力租赁完全指南(一):选卡篇——从入门到精通的GPU选购
大数据·人工智能·数据分析·云计算·音视频·gpu算力
蓝海星梦8 分钟前
Chain‑of‑Thought 推理链评估全解析:从参考方法到无参考指标
论文阅读·人工智能·自然语言处理·cot
少油少盐不要辣11 分钟前
前端如何处理AI模型返回的流数据
前端·javascript·人工智能
_abab11 分钟前
《大模型实战指南》—— 面向软件开发者的系统性入门
人工智能·语言模型