Meta Semantic Template for Evaluation of Large Language Models

本文是LLM系列文章,针对《Meta Semantic Template for Evaluation of Large Language Models》的翻译。

大型语言模型评估的元语义模板

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(llm)是否真正理解语言的语义,或者只是记住训练数据?最近对LLM潜在数据污染的关注,提高了社会对LLM评估研究的认识。在本文中,我们提出了MSTEMP,一种创建元语义模板来评估llm语义理解能力的方法。MSTEMP的核心不是直接对现有的基准数据集进行评估,而是以现有的数据集为种子生成新的out-of-distribution (OOD)评估集。具体来说,对于给定的句子,MSTEMP利用另一种语言模型来生成新的样本,同时保留其语义。这些新样本被称为原句子的语义模板。然后,MSTEMP通过句子解析和语义模板上的随机单词替换生成评估样本。MSTEMP具有高度的灵活性、动态性和成本效益。我们的初步实验表明,mstemp生成的样本可以显著降低使用现有数据集作为种子的llm的性能。我们希望这一初步工作能够对LLM评价的未来研究有所启发。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种基于给定种子数据集生成语义保持样本的llm评估方法MSTEMP。MSTEMP有可能通过使用额外的评估器LMs和替换模板中的单词来生成OOD样本,从而减少数据污染的可能性。我们希望这一初步工作能够分享我们对LLM评估研究的一些最新发现,并启发未来的新方法。

相关推荐
AI_NEW_COME1 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself1 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董2 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee2 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa2 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐2 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空2 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er2 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan7243 小时前
LILAC采样算法
人工智能·算法·机器学习