Meta Semantic Template for Evaluation of Large Language Models

本文是LLM系列文章,针对《Meta Semantic Template for Evaluation of Large Language Models》的翻译。

大型语言模型评估的元语义模板

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(llm)是否真正理解语言的语义,或者只是记住训练数据?最近对LLM潜在数据污染的关注,提高了社会对LLM评估研究的认识。在本文中,我们提出了MSTEMP,一种创建元语义模板来评估llm语义理解能力的方法。MSTEMP的核心不是直接对现有的基准数据集进行评估,而是以现有的数据集为种子生成新的out-of-distribution (OOD)评估集。具体来说,对于给定的句子,MSTEMP利用另一种语言模型来生成新的样本,同时保留其语义。这些新样本被称为原句子的语义模板。然后,MSTEMP通过句子解析和语义模板上的随机单词替换生成评估样本。MSTEMP具有高度的灵活性、动态性和成本效益。我们的初步实验表明,mstemp生成的样本可以显著降低使用现有数据集作为种子的llm的性能。我们希望这一初步工作能够对LLM评价的未来研究有所启发。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种基于给定种子数据集生成语义保持样本的llm评估方法MSTEMP。MSTEMP有可能通过使用额外的评估器LMs和替换模板中的单词来生成OOD样本,从而减少数据污染的可能性。我们希望这一初步工作能够分享我们对LLM评估研究的一些最新发现,并启发未来的新方法。

相关推荐
智源研究院官方账号几秒前
智源开源 Reason-RFT:用强化学习重塑视觉推理,突破 VLM 泛化瓶颈
人工智能
serve the people2 分钟前
tensorflow 零基础吃透:RaggedTensor 的重载运算符
人工智能·tensorflow·neo4j
JoannaJuanCV3 分钟前
自动驾驶—CARLA仿真(2)入门指南
人工智能·机器学习·自动驾驶·carla
努力毕业的小土博^_^4 分钟前
【生成式AI】Cross-Attention:多模态融合的神经网络桥梁(上篇)
人工智能·深度学习·神经网络·算法·机器学习·遥感
测试人社区-千羽4 分钟前
自动化缺陷修复的建议生成:赋能软件测试新范式
运维·人工智能·自然语言处理·分类·数据挖掘·自动化·ux
serve the people5 分钟前
tensorflow 如何使用 tf.RaggedTensorSpec 来创建 RaggedTensor
人工智能·python·tensorflow
大、男人5 分钟前
python之知识图谱(Neo4j)
人工智能·知识图谱·neo4j
悦数图数据库7 分钟前
国产图数据库:开启数据新“视”界 悦数科技
数据库·人工智能
AI优秘企业大脑8 分钟前
增长智能体助力企业智慧转型
大数据·人工智能