Meta Semantic Template for Evaluation of Large Language Models

本文是LLM系列文章,针对《Meta Semantic Template for Evaluation of Large Language Models》的翻译。

大型语言模型评估的元语义模板

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(llm)是否真正理解语言的语义,或者只是记住训练数据?最近对LLM潜在数据污染的关注,提高了社会对LLM评估研究的认识。在本文中,我们提出了MSTEMP,一种创建元语义模板来评估llm语义理解能力的方法。MSTEMP的核心不是直接对现有的基准数据集进行评估,而是以现有的数据集为种子生成新的out-of-distribution (OOD)评估集。具体来说,对于给定的句子,MSTEMP利用另一种语言模型来生成新的样本,同时保留其语义。这些新样本被称为原句子的语义模板。然后,MSTEMP通过句子解析和语义模板上的随机单词替换生成评估样本。MSTEMP具有高度的灵活性、动态性和成本效益。我们的初步实验表明,mstemp生成的样本可以显著降低使用现有数据集作为种子的llm的性能。我们希望这一初步工作能够对LLM评价的未来研究有所启发。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种基于给定种子数据集生成语义保持样本的llm评估方法MSTEMP。MSTEMP有可能通过使用额外的评估器LMs和替换模板中的单词来生成OOD样本,从而减少数据污染的可能性。我们希望这一初步工作能够分享我们对LLM评估研究的一些最新发现,并启发未来的新方法。

相关推荐
学习前端的小z2 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法30 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR31 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️37 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
光芒再现dev40 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python1 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠1 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能