Cognitive Mirage: A Review of Hallucinations in Large Language Models

本文是LLM系列文章,针对《Cognitive Mirage: A Review of Hallucinations in Large Language Models》的翻译。

认知海市蜃楼:大型语言模型中的幻觉研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 机制分析](#2 机制分析)
  • [3 幻觉的分类](#3 幻觉的分类)
  • [4 幻觉检测](#4 幻觉检测)
  • [5 幻觉校正](#5 幻觉校正)
  • [6 未来方向](#6 未来方向)
  • [7 结论与愿景](#7 结论与愿景)

摘要

随着大型语言模型在人工智能领域的不断发展,文本生成系统容易受到一种令人担忧的现象的影响,这种现象被称为幻觉。在这项研究中,我们总结了最近对LLM幻觉的令人信服的见解。我们从各种文本生成任务中提出了一种新的幻觉分类,从而提供了理论见解,检测方法和改进方法。在此基础上,提出了今后的研究方向。我们的贡献有三个方面:(1)我们为文本生成任务中出现的幻觉提供了详细而完整的分类;(2)对LLM的幻觉现象进行理论分析,提供现有的检测和改进方法;(3)提出了未来可以发展的几个研究方向。由于幻觉引起了社会的极大关注,我们将继续更新相关的研究进展。

1 引言

2 机制分析

3 幻觉的分类

4 幻觉检测

5 幻觉校正

6 未来方向

7 结论与愿景

本文综述了LLM幻觉的新分类、理论见解、检测方法、校正方法和未来的研究方向。请注意,确保我们能够以负责任和有益的方式持续利用LLM至关重要,因此我们探索幻觉的原因和任务轴的分类,以分析潜在的改进方向。在未来,我们设想llm与外部知识库之间更有效的协同作用,从而形成一个可靠的双轮驱动互动系统。我们希望能够提出复杂高效的检测方法,为进一步提高llm的性能做出贡献。此外,我们希望社会对减轻幻觉的影响保持积极的态度。LLM对各个方面提出了创造性的纠正方法,将在广泛的应用场景中为人类提供可靠、安全的信息。

相关推荐
Jaly_W3 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
小嗷犬5 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙12 分钟前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖29 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂41 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者42 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技2 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试