c++视觉处理---均值滤波

均值滤波

cv::blur()函数是OpenCV中用于应用均值滤波的函数。均值滤波是一种简单的平滑技术,它计算每个像素周围像素的平均值,并用该平均值替代原始像素值。这有助于降低图像中的噪声,并可以模糊图像的细节。

以下是cv::blur()函数的基本用法:

cpp 复制代码
void cv::blur(
    cv::InputArray src,         // 输入图像
    cv::OutputArray dst,        // 输出图像
    cv::Size ksize,             // 滤波核大小,通常是一个奇数
    cv::Point anchor = cv::Point(-1,-1),  // 锚点位置,默认为核的中心
    int borderType = cv::BORDER_DEFAULT   // 边界处理方式,默认为BORDER_DEFAULT
);

参数解释:

  • src: 输入图像。
  • dst: 输出图像,将平滑后的图像存储在这里。
  • ksize: 滤波核的大小,通常是一个奇数,例如(3, 3)(5, 5)。较大的核将导致更强烈的平滑效果。
  • anchor: 锚点位置,默认为(-1, -1),表示核的中心。
  • borderType: 边界处理方式,控制在图像边界处如何处理滤波操作。通常使用默认值cv::BORDER_DEFAULT

以下是示例代码,演示如何使用cv::blur()函数进行均值滤波:

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("your_image.jpg", cv::IMREAD_COLOR);

    if (image.empty()) {
        std::cerr << "Could not open or find the image!" << std::endl;
        return -1;
    }

    // 创建一个平滑后的图像副本
    cv::Mat smoothed_image;

    // 使用均值滤波平滑图像
    cv::blur(image, smoothed_image, cv::Size(5, 5)); // 5x5的均值滤波器

    // 显示原始图像和平滑后的图像
    cv::namedWindow("Original Image", cv::WINDOW_NORMAL);
    cv::namedWindow("Smoothed Image", cv::WINDOW_NORMAL);

    cv::imshow("Original Image", image);
    cv::imshow("Smoothed Image", smoothed_image);

    cv::waitKey(0);

    return 0;
}

这个示例使用cv::blur()函数将一个5x5的均值滤波器应用于输入图像,从而平滑图像。您可以根据需要选择不同大小的滤波器核以获得不同程度的平滑效果。确保已正确配置OpenCV以构建和运行C++代码。

使用相机实时均值滤波

cpp 复制代码
#include <opencv2/opencv.hpp>

// 全局变量,用于存储滑动条的值
int kernelSize = 5;

// 回调函数,用于处理滑动条的值变化
void onTrackbar(int value, void* userdata) {
    // 从userdata中获取VideoCapture对象
    cv::VideoCapture* cap = static_cast<cv::VideoCapture*>(userdata);

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    while (true) {
        cv::Mat frame;

        // 从相机中读取一帧图像
        *cap >> frame;

        if (frame.empty()) {
            std::cerr << "Failed to read frame from the camera!" << std::endl;
            break;
        }

        // 创建一个平滑后的图像副本
        cv::Mat smoothed_frame;

        // 使用均值滤波平滑图像,核的大小由滑动条值决定
        cv::blur(frame, smoothed_frame, cv::Size(kernelSize, kernelSize));

        // 显示实时摄像头图像和平滑后的图像
        cv::imshow("Live Camera Feed", smoothed_frame);
        cv::imshow("Smoothed Frame", frame);

        // 检查键盘输入,如果按下ESC键,退出循环
        char key = cv::waitKey(1);
        if (key == 27) // 27对应ESC键的ASCII码
            break;
    }
}

int main() {
    // 打开本地相机(通常相机编号为0表示默认相机,如果有多个相机,则可能需要调整编号)
    cv::VideoCapture cap(0);

    if (!cap.isOpened()) {
        std::cerr << "Could not open the camera!" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Live Camera Feed", cv::WINDOW_NORMAL);

    // 创建滑动条
    cv::createTrackbar("Kernel Size", "Live Camera Feed", &kernelSize, 30, onTrackbar, &cap);

    // 初始化一次滑动条回调函数以显示默认值
    onTrackbar(kernelSize, &cap);

    // 释放摄像头资源和关闭窗口
    cap.release();
    cv::destroyAllWindows();

    return 0;
}
相关推荐
一只小bit1 小时前
数据结构之栈,队列,树
c语言·开发语言·数据结构·c++
沐泽Mu3 小时前
嵌入式学习-QT-Day05
开发语言·c++·qt·学习
szuzhan.gy4 小时前
DS查找—二叉树平衡因子
数据结构·c++·算法
火云洞红孩儿4 小时前
基于AI IDE 打造快速化的游戏LUA脚本的生成系统
c++·人工智能·inscode·游戏引擎·lua·游戏开发·脚本系统
FeboReigns5 小时前
C++简明教程(4)(Hello World)
c语言·c++
FeboReigns5 小时前
C++简明教程(10)(初识类)
c语言·开发语言·c++
zh路西法5 小时前
【C++决策和状态管理】从状态模式,有限状态机,行为树到决策树(二):从FSM开始的2D游戏角色操控底层源码编写
c++·游戏·unity·设计模式·状态模式
.Vcoistnt6 小时前
Codeforces Round 994 (Div. 2)(A-D)
数据结构·c++·算法·贪心算法·动态规划
小k_不小6 小时前
C++面试八股文:指针与引用的区别
c++·面试
沐泽Mu6 小时前
嵌入式学习-QT-Day07
c++·qt·学习·命令模式