leetcode - 253. Meeting Rooms II

Description

Given an array of meeting time intervals intervals where intervals[i] = [starti, endi], return the minimum number of conference rooms required.

Example 1:

复制代码
Input: intervals = [[0,30],[5,10],[15,20]]
Output: 2

Example 2:

复制代码
Input: intervals = [[7,10],[2,4]]
Output: 1

Constraints:

复制代码
1 <= intervals.length <= 10^4
0 <= starti < endi <= 10^6

Solution

Heap

Solved after hints...

Think about how we would approach this problem in a very simplistic way. We will allocate rooms to meetings that occur earlier in the day v/s the ones that occur later on, right?

If you've figured out that we have to sort the meetings by their start time, the next thing to think about is how do we do the allocation?

There are two scenarios possible here for any meeting. Either there is no meeting room available and a new one has to be allocated, or a meeting room has freed up and this meeting can take place there.

So use a min-heap to store the ending time, every time we visit a new interval, compare the start time with the earliest ending time. If the start time begins later than the earliest ending time, then we could free up the room and allocate the room to the new interval. Otherwise we need to assign a new room for the new interval.

Time complexity: o ( n log ⁡ n ) o(n\log n ) o(nlogn)

Space complexity: o ( n ) o(n) o(n)

Sort + sweep

For all start, +1 at the point, and -1 for all ending points. Then sweep through all the points.

Time complexity: o ( n log ⁡ n ) o(n\log n) o(nlogn)

Space complexity: o ( 1 ) o(1) o(1)

Code

Heap

python3 复制代码
class Solution:
    def minMeetingRooms(self, intervals: List[List[int]]) -> int:
        heap = []
        intervals.sort(key=lambda x: x[0])
        res = 0
        for i in range(len(intervals)):
            if heap and heap[0] <= intervals[i][0]:
                heapq.heappop(heap)
            heapq.heappush(heap, intervals[i][1])
            res = max(res, len(heap))
        return res

Sort + sweep

python3 复制代码
class Solution:
    def minMeetingRooms(self, intervals: List[List[int]]) -> int:
        meetings = {}
        for start, end in intervals:
            meetings[start] = meetings.get(start, 0) + 1
            meetings[end] = meetings.get(end, 0) - 1
        points = sorted(meetings)
        res = 0
        room = 0
        for each_point in points:
            room += meetings[each_point]
            res = max(res, room)
        return res
相关推荐
wfeqhfxz25887824 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a5 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Aaron15885 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
石去皿6 小时前
大模型面试通关指南:28道高频考题深度解析与实战要点
人工智能·python·面试·职场和发展
程序员辣条6 小时前
AI产品经理:2024年职场发展的新机遇
人工智能·学习·职场和发展·产品经理·大模型学习·大模型入门·大模型教程
AI大模型测试6 小时前
大龄程序员想转行到AI大模型,好转吗?
人工智能·深度学习·机器学习·ai·语言模型·职场和发展·大模型
美团程序员6 小时前
80道经典常见测试面试题
软件测试·面试·职场和发展·软件测试面试
sunguang20186 小时前
“懂不懂管理,一看便知”:做管理就是3件事,抓大、放小、管细做管理,其实就是要做好三件事:抓大、放小、管细。
经验分享·职场和发展
ProcessOn官方账号6 小时前
程序员如何与同龄人拉开差距?这5张让你快速提升认知,打开格局!
深度学习·职场和发展·学习方法
阿福赚美刀6 小时前
跨境电商公司如何高效培养新人:实战经验分享
职场和发展·电脑