leetcode - 253. Meeting Rooms II

Description

Given an array of meeting time intervals intervals where intervals[i] = [starti, endi], return the minimum number of conference rooms required.

Example 1:

复制代码
Input: intervals = [[0,30],[5,10],[15,20]]
Output: 2

Example 2:

复制代码
Input: intervals = [[7,10],[2,4]]
Output: 1

Constraints:

复制代码
1 <= intervals.length <= 10^4
0 <= starti < endi <= 10^6

Solution

Heap

Solved after hints...

Think about how we would approach this problem in a very simplistic way. We will allocate rooms to meetings that occur earlier in the day v/s the ones that occur later on, right?

If you've figured out that we have to sort the meetings by their start time, the next thing to think about is how do we do the allocation?

There are two scenarios possible here for any meeting. Either there is no meeting room available and a new one has to be allocated, or a meeting room has freed up and this meeting can take place there.

So use a min-heap to store the ending time, every time we visit a new interval, compare the start time with the earliest ending time. If the start time begins later than the earliest ending time, then we could free up the room and allocate the room to the new interval. Otherwise we need to assign a new room for the new interval.

Time complexity: o ( n log ⁡ n ) o(n\log n ) o(nlogn)

Space complexity: o ( n ) o(n) o(n)

Sort + sweep

For all start, +1 at the point, and -1 for all ending points. Then sweep through all the points.

Time complexity: o ( n log ⁡ n ) o(n\log n) o(nlogn)

Space complexity: o ( 1 ) o(1) o(1)

Code

Heap

python3 复制代码
class Solution:
    def minMeetingRooms(self, intervals: List[List[int]]) -> int:
        heap = []
        intervals.sort(key=lambda x: x[0])
        res = 0
        for i in range(len(intervals)):
            if heap and heap[0] <= intervals[i][0]:
                heapq.heappop(heap)
            heapq.heappush(heap, intervals[i][1])
            res = max(res, len(heap))
        return res

Sort + sweep

python3 复制代码
class Solution:
    def minMeetingRooms(self, intervals: List[List[int]]) -> int:
        meetings = {}
        for start, end in intervals:
            meetings[start] = meetings.get(start, 0) + 1
            meetings[end] = meetings.get(end, 0) - 1
        points = sorted(meetings)
        res = 0
        room = 0
        for each_point in points:
            room += meetings[each_point]
            res = max(res, room)
        return res
相关推荐
hn小菜鸡4 小时前
LeetCode 377.组合总和IV
数据结构·算法·leetcode
Deepoch5 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
天真小巫5 小时前
2025.6.27总结
职场和发展
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
时空自由民.9 天前
C++ 不同线程之间传值
开发语言·c++·算法
ai小鬼头9 天前
AIStarter开发者熊哥分享|低成本部署AI项目的实战经验
后端·算法·架构
小白菜3336669 天前
DAY 37 早停策略和模型权重的保存
人工智能·深度学习·算法
zeroporn9 天前
以玄幻小说方式打开深度学习词嵌入算法!! 使用Skip-gram来完成 Word2Vec 词嵌入(Embedding)
人工智能·深度学习·算法·自然语言处理·embedding·word2vec·skip-gram
亮亮爱刷题9 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划
_周游9 天前
【数据结构】_二叉树OJ第二弹(返回数组的遍历专题)
数据结构·算法