【踩坑】hive脚本笛卡尔积严重降低查询效率问题

前一阵子查看我们公司的大数据平台的离线脚本运行情况, 结果发现有一个任务居然跑了一天多, 要知道这还只是几千万量级的表, 且这个任务是每天需要执行的

于是我把hive脚本捞出来看了下, 发现无非多join了几个复杂的子查询, 应该不至于这么久, 包括我又检查了是不是没有加上每日分区的筛选条件

在反反复复测试调整以后, 我发现问题出在这里:

隐式join的时候顺序问题会导致错误的笛卡尔积(不确定什么版本hive)
假如t1和t2关联,t2和t3关联, 但是如果写成了from t1,t3,t2比如下面这样, 就会造成t1和t3直接笛卡尔积, 再和t2笛卡尔积, 再where筛选

sql 复制代码
-- 
select x
from t1,t3,t2
where t1.id = t2.t1_id 
and t2.id = t3.t2_id

比如t1,t2,t3表都是1000, 彼此关联的是10条, 则按常理应该是t1和t2筛选和关联后得到临时表10条, 然后这10条再和t3进行10*1000筛选和关联.

但是根据explain解释执行, 貌似hive会将上面的直接1000* 1000*1000 可想而知这个效率会是怎么样

最后改为正确的顺序, 从1天多变成了二几分钟.搞定

结论

  1. hive这个不知道是不是bug, 也可能后续会修复, 但是保险起见最好按表的关联顺序来写
  2. 建议用显式join查询
  3. 写完hive脚本测试跑一次看看效率,不确定就explain
相关推荐
liupenglove6 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
吃手机用谁付的款19 小时前
基于hadoop的竞赛网站日志数据分析与可视化(下)
大数据·hadoop·python·信息可视化·数据分析
码字的字节1 天前
深入解析Hadoop RPC:技术细节与推广应用
hadoop·rpc
码字的字节1 天前
深入解析Hadoop架构设计:原理、组件与应用
大数据·hadoop·分布式·hadoop架构设计
LucianaiB2 天前
AI 时代的分布式多模态数据处理实践:我的 ODPS 实践之旅、思考与展望
大数据·数据仓库·人工智能·分布式·odps
༺水墨石༻2 天前
低版本hive(1.2.1)UDF实现清除历史分区数据
数据仓库·hive·hadoop
Leo.yuan3 天前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
isNotNullX3 天前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
熊猫钓鱼>_>3 天前
Hadoop 用户入门指南:驾驭大数据的力量
大数据·hadoop·分布式
William一直在路上3 天前
SpringBoot 拦截器和过滤器的区别
hive·spring boot·后端