TensorFlow入门(二十五、单个神经元的扩展——Maxout网络)

Maxout网络的原理

Maxout是Goodfellow在2013年提出的一个新的激活函数,与其它的激活函数相比,Maxout是需要参数的,且参数可以通过网络的反向传播得到学习,因此它比其它激活函数有着更好的性能,理论上可以拟合任意凸函数,进而使得网络取得更好的性能。

Maxout网络主要是扩展单个神经元里面的激活函数,可以将Maxout网络理解为是单个神经元的扩展。

单个神经元的网络模型如图所示:

计算公式为:

而Maxout网络是将激活函数变成一个网络选择器,原理是将多个神经元并列地放在一起,从它们的输出结果中找到最大的那个,代表对特征响应最敏感,然后取这个神经元的结果参与后面的运算。如图所示:

Maxout网络的激活函数有多个,每个的公式各不相同,可以理解成:

最后输出的为所有结果中值最大的那个。相当于同时把多个神经元放在一起使用,哪个神经元的效果最好,就用哪个,从而得到更好的拟合效果。

Maxout网络的应用

在TensorFlow中,通过reduce_max函数构建Maxout网络:

tf.reduce_max(input_tensor,axis = None,name = None)

reduce_max函数按axis方向对多个神经元的输出结果求最大值,然后将最大值当作输入按照神经元正反传播方向进行计算。

该函数一共有三个参数,input_tensor为输入的tensor对象;axis为计算方向,axis = 0时按列求最大值,axis = 1时按行求最大值。

有时,参数axis会变为reduction_indices,用途是一样的:

tf.reduce_max(input_tensor,reduction_indices = None)

相关推荐
Valueyou24几秒前
引入基于加权 IoU 的 WiseIoU 回归损失以提升 CT 图像检测鲁棒性
人工智能·python·深度学习·目标检测
BestSongC6 分钟前
基于VUE和FastAPI的行人目标检测系统
vue.js·人工智能·yolo·目标检测·fastapi
熊猫钓鱼>_>9 分钟前
多维度股票量化指标体系详解
python·股票·量化·指标·趋势·macd·估值
这张生成的图像能检测吗13 分钟前
(论文速读)SpiralMLP:一个轻量级的视觉MLP架构
图像处理·人工智能·深度学习·计算机视觉·mlp框架·分类、检测、分割
doubao3613 分钟前
如何在海量文献中高效筛选有价值信息
人工智能·学习·自然语言处理·aigc·ai工具·ai检索
执笔论英雄13 分钟前
【大模型训练】MTPLossLoggingHelper中get_tensor_and_context_parallel_group使用
人工智能·深度学习
美团技术团队13 分钟前
美团 LongCat Interaction 团队发布大模型交互系统技术报告 WOWService
人工智能
烤麻辣烫19 分钟前
AI(新手)
人工智能·学习·机器学习·ai编程
CoovallyAIHub23 分钟前
分割万事万物的AI,再进化!Meta SAM 3 来了,支持中文提示词!
深度学习·算法·计算机视觉
虹科网络安全26 分钟前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(1)】
人工智能·安全