TensorFlow入门(二十五、单个神经元的扩展——Maxout网络)

Maxout网络的原理

Maxout是Goodfellow在2013年提出的一个新的激活函数,与其它的激活函数相比,Maxout是需要参数的,且参数可以通过网络的反向传播得到学习,因此它比其它激活函数有着更好的性能,理论上可以拟合任意凸函数,进而使得网络取得更好的性能。

Maxout网络主要是扩展单个神经元里面的激活函数,可以将Maxout网络理解为是单个神经元的扩展。

单个神经元的网络模型如图所示:

计算公式为:

而Maxout网络是将激活函数变成一个网络选择器,原理是将多个神经元并列地放在一起,从它们的输出结果中找到最大的那个,代表对特征响应最敏感,然后取这个神经元的结果参与后面的运算。如图所示:

Maxout网络的激活函数有多个,每个的公式各不相同,可以理解成:

最后输出的为所有结果中值最大的那个。相当于同时把多个神经元放在一起使用,哪个神经元的效果最好,就用哪个,从而得到更好的拟合效果。

Maxout网络的应用

在TensorFlow中,通过reduce_max函数构建Maxout网络:

tf.reduce_max(input_tensor,axis = None,name = None)

reduce_max函数按axis方向对多个神经元的输出结果求最大值,然后将最大值当作输入按照神经元正反传播方向进行计算。

该函数一共有三个参数,input_tensor为输入的tensor对象;axis为计算方向,axis = 0时按列求最大值,axis = 1时按行求最大值。

有时,参数axis会变为reduction_indices,用途是一样的:

tf.reduce_max(input_tensor,reduction_indices = None)

相关推荐
权泽谦几秒前
脑肿瘤分割与分类的人工智能研究报告
人工智能·分类·数据挖掘
余俊晖几秒前
文档图像旋转对VLM OCR的影响及基于Phi-3.5-Vision+分类头的文档方向分类器、及数据构建思路
人工智能·分类·ocr
Cleaner1 分钟前
我是如何高效学习大模型的
人工智能·程序员·llm
西猫雷婶9 分钟前
CNN的四维Pytorch张量格式
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
未来之窗软件服务16 分钟前
幽冥大陆(二十三)python语言智慧农业电子秤读取——东方仙盟炼气期
开发语言·python·仙盟创梦ide·东方仙盟·东方仙盟sdk·东方仙盟浏览器
程序员三藏18 分钟前
Web自动化测试详细流程和步骤
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
化作星辰23 分钟前
解决 OpenCV imread 在 Windows 中读取包含中文路径图片失败的问题
人工智能·opencv·计算机视觉
数据知道23 分钟前
FastAPI基础项目:仿头条新闻的web项目,实现基本的新闻列表页和详情页查看功能
前端·python·fastapi·python项目
2501_9411112526 分钟前
自动化与脚本
jvm·数据库·python
聚梦小课堂30 分钟前
2025.11.17 AI快讯
人工智能·安全·语言模型·新闻资讯·ai大事件