TensorFlow入门(二十五、单个神经元的扩展——Maxout网络)

Maxout网络的原理

Maxout是Goodfellow在2013年提出的一个新的激活函数,与其它的激活函数相比,Maxout是需要参数的,且参数可以通过网络的反向传播得到学习,因此它比其它激活函数有着更好的性能,理论上可以拟合任意凸函数,进而使得网络取得更好的性能。

Maxout网络主要是扩展单个神经元里面的激活函数,可以将Maxout网络理解为是单个神经元的扩展。

单个神经元的网络模型如图所示:

计算公式为:

而Maxout网络是将激活函数变成一个网络选择器,原理是将多个神经元并列地放在一起,从它们的输出结果中找到最大的那个,代表对特征响应最敏感,然后取这个神经元的结果参与后面的运算。如图所示:

Maxout网络的激活函数有多个,每个的公式各不相同,可以理解成:

最后输出的为所有结果中值最大的那个。相当于同时把多个神经元放在一起使用,哪个神经元的效果最好,就用哪个,从而得到更好的拟合效果。

Maxout网络的应用

在TensorFlow中,通过reduce_max函数构建Maxout网络:

tf.reduce_max(input_tensor,axis = None,name = None)

reduce_max函数按axis方向对多个神经元的输出结果求最大值,然后将最大值当作输入按照神经元正反传播方向进行计算。

该函数一共有三个参数,input_tensor为输入的tensor对象;axis为计算方向,axis = 0时按列求最大值,axis = 1时按行求最大值。

有时,参数axis会变为reduction_indices,用途是一样的:

tf.reduce_max(input_tensor,reduction_indices = None)

相关推荐
GIS之路4 分钟前
GDAL 实现影像裁剪
前端·python·arcgis·信息可视化
卡尔AI工坊9 分钟前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
:mnong10 分钟前
通过手写识别数字可视化学习卷积神经网络原理
人工智能·学习·cnn
大飞记Python18 分钟前
代码级教程|用Playwright实现Web自动化测试:从零到录制生成脚本
自动化测试·python·selenium·playwright
俊哥V20 分钟前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai
_WndProc21 分钟前
【Python】方程计算器
开发语言·python
X54先生(人文科技)29 分钟前
碳硅协同对位法:从对抗博弈到共生协奏的元协议
人工智能·架构·零知识证明
我的offer在哪里29 分钟前
技术实战:用 Python 脚本高效采集与分析手机操作日志
开发语言·python·智能手机
阿里云大数据AI技术1 小时前
寻找 AI 全能王——阿里云 Data+AI 工程师全球大奖赛正式开启
人工智能·阿里云·云计算·天池大赛
智航GIS1 小时前
11.18 自定义Pandas扩展开发指南:打造你的专属数据分析武器库
python·数据分析·pandas