TensorFlow入门(二十五、单个神经元的扩展——Maxout网络)

Maxout网络的原理

Maxout是Goodfellow在2013年提出的一个新的激活函数,与其它的激活函数相比,Maxout是需要参数的,且参数可以通过网络的反向传播得到学习,因此它比其它激活函数有着更好的性能,理论上可以拟合任意凸函数,进而使得网络取得更好的性能。

Maxout网络主要是扩展单个神经元里面的激活函数,可以将Maxout网络理解为是单个神经元的扩展。

单个神经元的网络模型如图所示:

计算公式为:

而Maxout网络是将激活函数变成一个网络选择器,原理是将多个神经元并列地放在一起,从它们的输出结果中找到最大的那个,代表对特征响应最敏感,然后取这个神经元的结果参与后面的运算。如图所示:

Maxout网络的激活函数有多个,每个的公式各不相同,可以理解成:

最后输出的为所有结果中值最大的那个。相当于同时把多个神经元放在一起使用,哪个神经元的效果最好,就用哪个,从而得到更好的拟合效果。

Maxout网络的应用

在TensorFlow中,通过reduce_max函数构建Maxout网络:

tf.reduce_max(input_tensor,axis = None,name = None)

reduce_max函数按axis方向对多个神经元的输出结果求最大值,然后将最大值当作输入按照神经元正反传播方向进行计算。

该函数一共有三个参数,input_tensor为输入的tensor对象;axis为计算方向,axis = 0时按列求最大值,axis = 1时按行求最大值。

有时,参数axis会变为reduction_indices,用途是一样的:

tf.reduce_max(input_tensor,reduction_indices = None)

相关推荐
夏天是冰红茶3 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩6 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3936 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99906 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1237 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
superman超哥7 小时前
仓颉语言中基本数据类型的深度剖析与工程实践
c语言·开发语言·python·算法·仓颉
春日见7 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
Learner__Q7 小时前
每天五分钟:滑动窗口-LeetCode高频题解析_day3
python·算法·leetcode
————A7 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR8 小时前
每周AI论文速递(251215-251219)
人工智能