TensorFlow入门(二十五、单个神经元的扩展——Maxout网络)

Maxout网络的原理

Maxout是Goodfellow在2013年提出的一个新的激活函数,与其它的激活函数相比,Maxout是需要参数的,且参数可以通过网络的反向传播得到学习,因此它比其它激活函数有着更好的性能,理论上可以拟合任意凸函数,进而使得网络取得更好的性能。

Maxout网络主要是扩展单个神经元里面的激活函数,可以将Maxout网络理解为是单个神经元的扩展。

单个神经元的网络模型如图所示:

计算公式为:

而Maxout网络是将激活函数变成一个网络选择器,原理是将多个神经元并列地放在一起,从它们的输出结果中找到最大的那个,代表对特征响应最敏感,然后取这个神经元的结果参与后面的运算。如图所示:

Maxout网络的激活函数有多个,每个的公式各不相同,可以理解成:

最后输出的为所有结果中值最大的那个。相当于同时把多个神经元放在一起使用,哪个神经元的效果最好,就用哪个,从而得到更好的拟合效果。

Maxout网络的应用

在TensorFlow中,通过reduce_max函数构建Maxout网络:

tf.reduce_max(input_tensor,axis = None,name = None)

reduce_max函数按axis方向对多个神经元的输出结果求最大值,然后将最大值当作输入按照神经元正反传播方向进行计算。

该函数一共有三个参数,input_tensor为输入的tensor对象;axis为计算方向,axis = 0时按列求最大值,axis = 1时按行求最大值。

有时,参数axis会变为reduction_indices,用途是一样的:

tf.reduce_max(input_tensor,reduction_indices = None)

相关推荐
kk哥889918 小时前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
陈天伟教授19 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
搞科研的小刘选手20 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck20 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息20 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog20 小时前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
笨笨聊运维1 天前
CentOS官方不维护版本,配置python升级方法,无损版
linux·python·centos
Gerardisite1 天前
如何在微信个人号开发中有效管理API接口?
java·开发语言·python·微信·php
噜~噜~噜~1 天前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理