建立一个新的高阶数学教授模式,知其然,知其用,知其之所以然,知其所以然

1. 传统常用的模式

概念,性质,定理,定理证明,定理应用;

这个学习模式挺好的,但是定理证明过程往往很冗长,而且不易记忆,也就是说,即使推导了定理,初学者也记不住这个推导过程和思路;

当然不是说推导不重要,而是很重要;但是,耗费精力太大,会减缓初学者建立知识体系的速度;

2. 新的讲授模式

一个可以尝试的数学讲授模式:

第一章:

概念1.1,性质,定理1.1是什么,为什么要引入这个定理,如何应用这个定理;

概念1.2,性质,定理1.2是什么,为什么要引入这个定理,如何应用这个定理;

...

概念1.n,性质,定理1.3是什么,为什么要引入这个定理,如何应用这个定理;

定理1.1的证明;

定理1.2的证明;

...

定理1.n的证明;


第二章:

概念2.1,性质,定理2.1是什么,为什么要引入这个定理,如何应用这个定理;

概念2.2,性质,定理2.2是什么,为什么要引入这个定理,如何应用这个定理;

...

概念2.n,性质,定理2.3是什么,为什么要引入这个定理,如何应用这个定理;

定理2.1的证明;

定理2.2的证明;

...

定理2.n的证明;


或者先把整本书的应用讲完,再讲定理证明

这样的好处在于入门容易,建立体系容易,并且勾起对定理成立与否的好奇,然后待时机成熟时,再开展证明。

传统方式的弊端:在定理本身是什么的冲击下,一般同学不会对其为何成立产生好奇,而对于是什么,能做什么的掌握将占据主要精力。等应用后,熟悉到一个程度时,对其真理性才会产生好奇,也具有足够的心理准备和查看证明过程的意愿;

3. 示例

相关推荐
Small___ming1 天前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
RE-19013 天前
《深入浅出统计学》学习笔记(二)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
Small___ming5 天前
【人工智能数学基础】什么是高斯分布/正态分布?
人工智能·概率论
Small___ming6 天前
【人工智能数学基础】如何理解方差与协方差?
人工智能·概率论
月疯7 天前
样本熵和泊松指数的计算流程!!!
算法·机器学习·概率论
zyq~7 天前
【课堂笔记】概率论-3
笔记·概率论
RE-19017 天前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
phoenix@Capricornus9 天前
样本与样本值
人工智能·机器学习·概率论
qq_ddddd11 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海12 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论