建立一个新的高阶数学教授模式,知其然,知其用,知其之所以然,知其所以然

1. 传统常用的模式

概念,性质,定理,定理证明,定理应用;

这个学习模式挺好的,但是定理证明过程往往很冗长,而且不易记忆,也就是说,即使推导了定理,初学者也记不住这个推导过程和思路;

当然不是说推导不重要,而是很重要;但是,耗费精力太大,会减缓初学者建立知识体系的速度;

2. 新的讲授模式

一个可以尝试的数学讲授模式:

第一章:

概念1.1,性质,定理1.1是什么,为什么要引入这个定理,如何应用这个定理;

概念1.2,性质,定理1.2是什么,为什么要引入这个定理,如何应用这个定理;

...

概念1.n,性质,定理1.3是什么,为什么要引入这个定理,如何应用这个定理;

定理1.1的证明;

定理1.2的证明;

...

定理1.n的证明;


第二章:

概念2.1,性质,定理2.1是什么,为什么要引入这个定理,如何应用这个定理;

概念2.2,性质,定理2.2是什么,为什么要引入这个定理,如何应用这个定理;

...

概念2.n,性质,定理2.3是什么,为什么要引入这个定理,如何应用这个定理;

定理2.1的证明;

定理2.2的证明;

...

定理2.n的证明;


或者先把整本书的应用讲完,再讲定理证明

这样的好处在于入门容易,建立体系容易,并且勾起对定理成立与否的好奇,然后待时机成熟时,再开展证明。

传统方式的弊端:在定理本身是什么的冲击下,一般同学不会对其为何成立产生好奇,而对于是什么,能做什么的掌握将占据主要精力。等应用后,熟悉到一个程度时,对其真理性才会产生好奇,也具有足够的心理准备和查看证明过程的意愿;

3. 示例

相关推荐
EQUINOX15 天前
如何理解泊松分布
概率论
幻风_huanfeng6 天前
人工智能之数学基础:概率论之韦恩图的应用
概率论·韦恩图
金色光环10 天前
切比雪夫不等式的理解以及推导【超详细笔记】
概率论
幻风_huanfeng11 天前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论
点云SLAM12 天前
海森矩阵(Hessian Matrix)在SLAM图优化和点云配准中的应用介绍
算法·机器学习·矩阵·机器人·概率论·最小二乘法·数值优化
港港胡说17 天前
概率论-独立同分布
概率论
F_D_Z19 天前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
金色光环22 天前
概率论:理解区间估计【超详细笔记】
笔记·数学·概率论·数理统计·区间估计
微小冷1 个月前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者1 个月前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角