PyTorch入门教学——简介与环境配置

一、简介

  • PyTorch是一个开源的Python机器学习库,其前身是2002年诞生于纽约大学的Torch。它是美国Facebook公司使用python语言开发的一个深度学习的框架。
  • 特点:
    • 简洁
      • PyTorch的设计追求最少的封装,尽量避免重复造轮子。 简洁的设计带来的另外一个好处就是代码易于理解。PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码十分易于阅读。
    • 速度
      • PyTorch的灵活性不以牺牲速度为代价,在许多评测中,PyTorch的速度表现胜过 TensorFlow和Keras等框架。
    • 易用
      • PyTorch 是所有的框架中面向对象设计的最优雅的一个。PyTorch的面向对象的接口设计来源于Torch,而Torch的接口设计以灵活易用而著称,Keras作者最初就是受Torch的启发才开发了Keras。PyTorch继承了Torch的衣钵,尤其是API的设计和模块的接口都与Torch高度一致。PyTorch的设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法,即所思即所得,不需要考虑太多关于框架本身的束缚。

二、安装

1、安装Anaconda

2、配置Anaconda源

  • 设置清华源,提高下载包的速度。打开Anaconda Prompt,输入如下命令。
  conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud//pytorch/
  conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

3、创建Conda虚拟环境

  • 创建虚拟环境前,需要修改虚拟环境的存放位置,默认是安装在用户目录C:\Users\username.conda\envs下的。在Anaconda Prompt中输入如下命令。
    *

      conda config --add envs_dirs D:\App\Anaconda3\envs
    
  • 如果修改失败,请参照:改变conda虚拟环境的默认路径_修改conda安装虚拟环境路径-CSDN博客

  • 输入如下命令,创建虚拟环境。
    *

      conda create -n Demo python=3.11.5
    
    • 其中,Demo为环境名称,并且指定了python的版本号。
  • 输入如下命令,查看现存虚拟环境。
    *

      conda info --envs
    
  • 如果要删除虚拟环境,输入如下命令。
    *

      conda env remove -n 环境名
    

4、下载PyTorch

  • 进入虚拟环境
    *

      conda activate 虚拟环境名称
    
  • 进入PyTorch的官网:PyTorch

  • 由于尝试使用Conda无法安装成功,故使用pip进行安装。选择对应的版本,复制命令行。

  • 可以通过在终端中输入如下命令进行查看。

  • 版本要求:CUDA对应的NVIDIA驱动版本对照表_cuda 对应驱动版本-CSDN博客,这里选择的是GPU版本。

  • 粘贴命令行到Anaconda Prompt中(要进入创建的虚拟环境),加上清华镜像源-i https://pypi.tuna.tsinghua.edu.cn/simple,运行。
    *

      pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple
    
  • 【注】如果碰到了缺包的错误提示,将环境删除,重新创建过。

5、验证是否安装成功

  • 从创建的虚拟环境中进入python,输入如下命令。
python 复制代码
import torch
import torchvision
print(torch.cuda.is_available())
  • 不报错,并且显示Ture,即安装成功。
  • 输入quit(),可退出python;输入conda deavtivate,可退出虚拟环境。
相关推荐
用户6915811416533 分钟前
Ascend Extension for PyTorch的源码解析
人工智能
努力的家伙是不讨厌的36 分钟前
解析json导出csv或者直接入库
开发语言·python·json
云空1 小时前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香2 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
测试杂货铺2 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱