OpenAI开放gpt-3.5turbo微调fine-tuning测试教程

文章目录

openai微调 fine-tuning介绍
openai微调地址

网址:https://platform.openai.com/finetune

jsonl格式数据集准备
  • 使用Chinese-medical-dialogue-data数据集
  • git clone进行下载

git clone https://github.com/Toyhom/Chinese-medical-dialogue-data

  • 选择其中心血管科中的部分数据进行微调

    微调需要进行付费,token越多收费越多,并且gpt-3.5-turbotoken数最多为4096

  • dataframe导入csv文件

python 复制代码
import pandas as pd

df = pd.read_csv('Chinese-medical-dialogue-data/样例_内科5000-6000.csv',encoding='gbk')

df
  • 提取样本
python 复制代码
train_data = df[df['department']=='心血管科'].iloc[0:50,:]
valid_data = df[df['department']=='心血管科'].iloc[50:70,:]

train_data
  • jsonl格式数据构建
python 复制代码
lis1 = []
lis2 = []
sys_content = "You are a specialist in cardiovascular disease and you will apply your expertise to give your specialized answers to patients."

for index,row in train_data.iterrows():
    each = []
    each.append({"role":"system","content":sys_content})
    each.append({"role":"user","content":row['ask']})
    each.append({"role":"assistant","content":row['answer']})
    #print(each)
    lis1.append(each)

for index,row in valid_data.iterrows():
    each = []
    each.append({"role":"system","content":sys_content})
    each.append({"role":"user","content":row['ask']})
    each.append({"role":"assistant","content":row['answer']})
    #print(each)
    lis2.append(each)

lis1
  • jsonl数据导出
python 复制代码
lis1 = []
lis2 = []
sys_content = "You are a specialist in cardiovascular disease and you will apply your expertise to give your specialized answers to patients."

for index,row in train_data.iterrows():
    each = []
    each.append({"role":"system","content":sys_content})
    each.append({"role":"user","content":row['ask']})
    each.append({"role":"assistant","content":row['answer']})
    #print(each)
    lis1.append(each)

for index,row in valid_data.iterrows():
    each = []
    each.append({"role":"system","content":sys_content})
    each.append({"role":"user","content":row['ask']})
    each.append({"role":"assistant","content":row['answer']})
    #print(each)
    lis2.append(each)

lis1
点击上传文件
  • 上传文件(钱不够了)
相关推荐
222you13 分钟前
git的命令
git
Coolbike1 小时前
Git工作流
git
雲_kumo2 小时前
从零开始读懂Transformer:架构解析与PyTorch实现
pytorch·架构·transformer
~央千澈~5 小时前
实战针对本地项目git如何移除旧仓库关联并且添加关联新仓库-优雅草卓伊凡
git
JH307312 小时前
git常用命令大全
git
西西弗Sisyphus17 小时前
一个基于稀疏混合专家模型(Sparse Mixture of Experts, Sparse MoE) 的 Transformer 语言模型
语言模型·transformer·moe
ll57764433218 小时前
使用PyTorch实现自定义损失函数以FocalLoss为例的详细教程
git
李少兄19 小时前
Git 用户名与邮箱配置指南
git
puyaCheer19 小时前
Android 13 启动的时候会显示一下logo,很不友好
android·gitee
Blue啊20 小时前
code Merge(qcc)
git·gitlab