机器学习-无监督算法之降维

  • 降维:将训练数据中的样本从高维空间转换到低维空间,降维是对原始数据线性变换实现的。
  • 为什么要降维?高维计算难,泛化能力差,防止维数灾难
  • 优点:减少冗余特征,方便数据可视化,减少内存。
  • 缺点:可能丢失数据,需要确定保留多少主成分

奇异值分解

  • 把一个矩阵拆成三个,对角矩阵起到拉伸作用,正交矩阵起到旋转作用。
  • A = UΣVT:U和V为正交矩阵,Σ为对角矩阵

Created with Raphaël 2.3.0 开始 M = UΣV^T 求M^TM的特征向量得到V 求MM^T的特征向量得到U 求M^TM或MM^T的特征值,然后开放得到奇异值 构成对角矩阵Σ

  • 应用:节省存储空间,降维,图片压缩

主成分分析

  1. PCA识别在训练集中占方差最大的轴
  2. 步骤
  • Z值化
  • 计算协方差矩阵,它的特征向量就是主成分
    • 利用SVD求特征向量
    • 基于特征值求特征向量
  1. 对角矩阵代表方差,其余代表相关性
  2. 缺点:分类问题效果不好

t-SNE

  1. 归一化
  2. 计算在二维空间中数据的相似度
  3. 将二维随机映射到一维,然后按照高纬度和低纬度相似度的差异,设计损失函数,用梯度下降来优化


常见降维算法

相关推荐
王老师青少年编程6 分钟前
csp信奥赛c++高频考点假期集训(分模块进阶)
数据结构·c++·算法·csp·高频考点·信奥赛·集训
量子-Alex9 分钟前
【大模型思维链】RAP中如何通过提示词将LLM改造为世界模型
人工智能·深度学习·机器学习
码农杂谈000740 分钟前
企业人工智能:2026 避坑指南,告别工具摆设,实现 AI 价值变现
人工智能·百度
tuotali20261 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
砚边数影1 小时前
模型持久化(二):从 KingbaseES 加载模型,实现离线预测
数据库·机器学习·kingbase·模型推理·数据库平替用金仓·金仓数据库
硅谷秋水1 小时前
多智体机器人系统(MARS)挑战的进展与创新
深度学习·机器学习·计算机视觉·语言模型·机器人·人机交互
systeminof1 小时前
从类比到迁移:研究解析大脑“举一反三”的神经基础
人工智能
癫狂的兔子2 小时前
【Python】【机器学习】K-MEANS算法
算法·机器学习·kmeans
波动几何2 小时前
价格运动三大定律:从市场混沌到几何必然性
人工智能
志栋智能2 小时前
AI驱动的系统自动化巡检:重塑IT基石的智慧“守护神”
大数据·运维·人工智能·云原生·自动化