机器学习-无监督算法之降维

  • 降维:将训练数据中的样本从高维空间转换到低维空间,降维是对原始数据线性变换实现的。
  • 为什么要降维?高维计算难,泛化能力差,防止维数灾难
  • 优点:减少冗余特征,方便数据可视化,减少内存。
  • 缺点:可能丢失数据,需要确定保留多少主成分

奇异值分解

  • 把一个矩阵拆成三个,对角矩阵起到拉伸作用,正交矩阵起到旋转作用。
  • A = UΣVT:U和V为正交矩阵,Σ为对角矩阵

Created with Raphaël 2.3.0 开始 M = UΣV^T 求M^TM的特征向量得到V 求MM^T的特征向量得到U 求M^TM或MM^T的特征值,然后开放得到奇异值 构成对角矩阵Σ

  • 应用:节省存储空间,降维,图片压缩

主成分分析

  1. PCA识别在训练集中占方差最大的轴
  2. 步骤
  • Z值化
  • 计算协方差矩阵,它的特征向量就是主成分
    • 利用SVD求特征向量
    • 基于特征值求特征向量
  1. 对角矩阵代表方差,其余代表相关性
  2. 缺点:分类问题效果不好

t-SNE

  1. 归一化
  2. 计算在二维空间中数据的相似度
  3. 将二维随机映射到一维,然后按照高纬度和低纬度相似度的差异,设计损失函数,用梯度下降来优化


常见降维算法

相关推荐
水月wwww2 小时前
【算法设计】动态规划
算法·动态规划
人工智能培训2 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心2 小时前
人工智能要学习的课程有哪些?
人工智能·学习
普通网友3 小时前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
白帽子黑客罗哥3 小时前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
码农水水3 小时前
小红书Java面试被问:Online DDL的INSTANT、INPLACE、COPY算法差异
算法
捕风捉你3 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤3 小时前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI3 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
极新3 小时前
智面玄赏联合创始人李男:人工智能赋能招聘行业——从效率革新到平台经济重构|2025极新AIGC峰会演讲实录
人工智能·百度