机器学习-无监督算法之降维

  • 降维:将训练数据中的样本从高维空间转换到低维空间,降维是对原始数据线性变换实现的。
  • 为什么要降维?高维计算难,泛化能力差,防止维数灾难
  • 优点:减少冗余特征,方便数据可视化,减少内存。
  • 缺点:可能丢失数据,需要确定保留多少主成分

奇异值分解

  • 把一个矩阵拆成三个,对角矩阵起到拉伸作用,正交矩阵起到旋转作用。
  • A = UΣVT:U和V为正交矩阵,Σ为对角矩阵

Created with Raphaël 2.3.0 开始 M = UΣV^T 求M^TM的特征向量得到V 求MM^T的特征向量得到U 求M^TM或MM^T的特征值,然后开放得到奇异值 构成对角矩阵Σ

  • 应用:节省存储空间,降维,图片压缩

主成分分析

  1. PCA识别在训练集中占方差最大的轴
  2. 步骤
  • Z值化
  • 计算协方差矩阵,它的特征向量就是主成分
    • 利用SVD求特征向量
    • 基于特征值求特征向量
  1. 对角矩阵代表方差,其余代表相关性
  2. 缺点:分类问题效果不好

t-SNE

  1. 归一化
  2. 计算在二维空间中数据的相似度
  3. 将二维随机映射到一维,然后按照高纬度和低纬度相似度的差异,设计损失函数,用梯度下降来优化


常见降维算法

相关推荐
多恩Stone1 分钟前
【3DV 进阶-9】Hunyuan3D2.1 中的 MoE
人工智能·pytorch·python·算法·aigc
xu_yule3 分钟前
数据结构(4)链表概念+单链表实现
数据结构·算法·链表
B站计算机毕业设计之家4 分钟前
大数据项目:基于python电商平台用户行为数据分析可视化系统 电商订单数据分析 Django框架 Echarts可视化 大数据技术(建议收藏)
大数据·python·机器学习·数据分析·django·电商·用户分析
Chase_______8 分钟前
AI 提升效率指南:如何高效书写提示词
人工智能·ai·prompt
代码栈上的思考17 分钟前
二叉树的层序遍历:4道例题讲解
算法·宽度优先·队列在宽度优先搜索中的应用
数据猿19 分钟前
【“致敬十年”系列】专访中国商联数据委会长邹东生:以“最小化场景闭环”实现AI真价值
大数据·人工智能
杰瑞不懂代码20 分钟前
【公式推导】AMP算法比BP算法强在哪(二)
python·算法·机器学习·概率论
无垠的广袤21 分钟前
【工业树莓派 CM0 NANO 单板计算机】小智语音聊天
人工智能·python·嵌入式硬件·语言模型·树莓派·智能体·小智
智算菩萨21 分钟前
深度学习在软件工程领域的系统性研究综述:理论、方法与实践
人工智能·深度学习·软件工程
野蛮人6号22 分钟前
力扣热题100道之45跳跃游戏2
算法·leetcode·游戏