从Flink的Kafka消费者看算子联合列表状态的使用

背景

算子的联合列表状态是平时使用的比较少的一种状态,本文通过kafka的消费者实现来看一下怎么使用算子列表联合状态

算子联合列表状态

首先我们看一下算子联合列表状态的在进行故障恢复或者从某个保存点进行扩缩容启动应用时状态的恢复情况

算子联合列表状态主要由这两个方法处理:

1初始化方法

java 复制代码
public final void initializeState(FunctionInitializationContext context) throws Exception {

        OperatorStateStore stateStore = context.getOperatorStateStore();
		// 在初始化方法中获取联合列表状态
        this.unionOffsetStates =
                stateStore.getUnionListState(
                        new ListStateDescriptor<>(
                                OFFSETS_STATE_NAME,
                                createStateSerializer(getRuntimeContext().getExecutionConfig())));

        if (context.isRestored()) {
            restoredState = new TreeMap<>(new KafkaTopicPartition.Comparator());
// 把联合列表状态的数据都恢复成类的本地变量中
            // populate actual holder for restored state
            for (Tuple2<KafkaTopicPartition, Long> kafkaOffset : unionOffsetStates.get()) {
                restoredState.put(kafkaOffset.f0, kafkaOffset.f1);
            }

            LOG.info(
                    "Consumer subtask {} restored state: {}.",
                    getRuntimeContext().getIndexOfThisSubtask(),
                    restoredState);
        } else {
            LOG.info(
                    "Consumer subtask {} has no restore state.",
                    getRuntimeContext().getIndexOfThisSubtask());
        }
    }

2.开始通知检查点开始的方法:

java 复制代码
public final void snapshotState(FunctionSnapshotContext context) throws Exception {
        if (!running) {
            LOG.debug("snapshotState() called on closed source");
        } else {
            unionOffsetStates.clear();

            final AbstractFetcher<?, ?> fetcher = this.kafkaFetcher;
            if (fetcher == null) {
                // the fetcher has not yet been initialized, which means we need to return the
                // originally restored offsets or the assigned partitions
                for (Map.Entry<KafkaTopicPartition, Long> subscribedPartition :
                        subscribedPartitionsToStartOffsets.entrySet()) {
                        // 进行checkpoint时,把数据保存到联合列表状态中进行保存
                    unionOffsetStates.add(
                            Tuple2.of(
                                    subscribedPartition.getKey(), subscribedPartition.getValue()));
                }

                if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
                    // the map cannot be asynchronously updated, because only one checkpoint call
                    // can happen
                    // on this function at a time: either snapshotState() or
                    // notifyCheckpointComplete()
                    pendingOffsetsToCommit.put(context.getCheckpointId(), restoredState);
                }
            } else {
                HashMap<KafkaTopicPartition, Long> currentOffsets = fetcher.snapshotCurrentState();

                if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
                    // the map cannot be asynchronously updated, because only one checkpoint call
                    // can happen
                    // on this function at a time: either snapshotState() or
                    // notifyCheckpointComplete()
                    pendingOffsetsToCommit.put(context.getCheckpointId(), currentOffsets);
                }

                for (Map.Entry<KafkaTopicPartition, Long> kafkaTopicPartitionLongEntry :
                        currentOffsets.entrySet()) {
                    unionOffsetStates.add(
                            Tuple2.of(
                                    kafkaTopicPartitionLongEntry.getKey(),
                                    kafkaTopicPartitionLongEntry.getValue()));
                }
            }

            if (offsetCommitMode == OffsetCommitMode.ON_CHECKPOINTS) {
                // truncate the map of pending offsets to commit, to prevent infinite growth
                while (pendingOffsetsToCommit.size() > MAX_NUM_PENDING_CHECKPOINTS) {
                    pendingOffsetsToCommit.remove(0);
                }
            }
        }
    }
相关推荐
运器1231 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程
万米商云3 小时前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
BigData共享3 小时前
极致性能背后的黑科技?这个世上没有“银弹”!(三)
大数据
阿里云大数据AI技术3 小时前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·人工智能·flink
y_y_liang3 小时前
图生生AI商品换背景,高效商拍!
大数据·人工智能·ai·ai作画
王小王-1233 小时前
基于Hadoop的用户购物行为可视化分析系统设计与实现
大数据·hadoop·分布式·用户购物行为·电商日志分析
沐尘而生3 小时前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐
贝格前端工场4 小时前
小程序订阅消息设计:用户触达与隐私保护的平衡法则
大数据·小程序
sql2008help4 小时前
5-Kafka-replication(副本机制)概念
分布式·kafka
成都极云科技5 小时前
成都算力租赁新趋势:H20 八卡服务器如何重塑 AI 产业格局?
大数据·服务器·人工智能·云计算·gpu算力