深度学习零基础教程

代码运行软件安装:

anaconda:一个管理环境的软件-->https://blog.csdn.net/scorn_/article/details/106591160(可选装)

pycharm:一个深度学习运行环境-->https://blog.csdn.net/scorn_/article/details/106591160(运行代码必装)

推荐书籍:

通过百度网盘分享的文件:深度学习(花书).pdf等2个文件

链接:https://pan.baidu.com/s/1brof0cXPURJ_amc05HcpYA?pwd=565P

提取码:565P

网上书记:Deep Learning (书籍): 由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 撰写的经典教材,涵盖了深度学习的各个方面

如果不习惯下述学习网站可以参考:B站(此吴恩达课程优先学习)

机器学习:https://www.bilibili.com/video/BV164411b7dx/?spm_id_from=333.337.search-card.all.click

深度学习:https://www.bilibili.com/video/BV1FT4y1E74V/?spm_id_from=333.337.search-card.all.click

代码教程:https://github.com/lmoroney/dlaicourse :对应吴恩达课程的作业部分

基础知识:

  1. 数学基础: 对于深度学习,需要了解线性代数、微积分、概率论和统计基础。可以参考以下资源:
  2. 编程基础: Python 是深度学习最常用的编程语言,因此需要掌握 Python 语言。可以参考以下资源:
  3. 机器学习基础: 要理解深度学习,首先需要了解基础的机器学习概念。可以参考以下资源:

深度学习基础:

  1. 深度学习理论: 学习深度学习的基本概念和算法,如神经网络、卷积神经网络、循环神经网络、优化方法等。可以参考以下资源:
  2. 深度学习实践: 学习使用深度学习框架(如 TensorFlow、PyTorch)实现深度学习的应用。可以参考以下资源(英语要求较****高 ):
  3. 深度学习项目实战: 通过实际项目来提升深度学习的实践能力,例如 Kaggle 上的深度学习比赛。

经典课程与PPT.代码资源学习

此外,还有一些中国的优质深度学习课程,例如清华大学的深度学习课程,浙江大学的机器学习课程等。

项目实战(后期用):

通过百度网盘分享的文件:【PPT】随堂课...等3个文件

链接:https://pan.baidu.com/s/1xaYK-pbGK-rBBfiPFN1RJg?pwd=13f4

提取码:13f4

其他问题可以直接Q我,有求必应

相关推荐
田里的水稻20 小时前
DT_digital_twin_ROS+Grazebo仿真
深度学习·数据挖掘·数据分析
qq_3482318520 小时前
AI 驱动-前端源码生成测试
人工智能
飞Link20 小时前
GDN:深度学习时代的图偏差网络异常检测全解析
网络·人工智能·深度学习
喏喏心20 小时前
深度强化学习:价值迭代与Bellman方程实践
人工智能·python·学习·机器学习
阿杰学AI20 小时前
AI核心知识48——大语言模型之Synthetic Data(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·合成数据·synthetic data·模型崩溃
陈天伟教授20 小时前
人工智能应用-机器视觉:人脸识别(6)深度神经网络方法
人工智能·神经网络·dnn
千匠网络21 小时前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
JERRY. LIU21 小时前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉
吐个泡泡v21 小时前
深度学习中的“压缩与解压“艺术:自编码器与VAE详解
深度学习·vae·生成模型·自编码器