【COMP329 LEC 2 Agent and Robot Architectures】

Agent and Robot Architectures

Part 3 Reactive Architectures and the Subsumption Architecture

In these lectures, we look at alternative architectures that better support some classes of agents and robots
• At the end, we then examine how hybrid architectures exploits the best aspects
of deliberative and reactive ones

1. Agent Control Loop as Layers

连续地进行

2. Behaviour based control

并排的进行??

在最后整合到Coordination的过程中,有多种选择的方式,包括:

a. Pick the ``best''

b. Sum the outputs
c. Use a weighted sum

3. Brooks Behavioural Languages

4. Emergent Behaviour

我理解的就是,当一些规则同时进行的时候,可能会产生出一些反应,使得行为变成"程序以外"的结果,比如第二张图片.

synergies:协同,配合。(这里指的是 轻微偏右运动 + 躲避障碍 = 墙体跟随 这个协同)


5. Subsumption Architecture

就是有很多行为指令,但每个行为指令都有优先等级,例如"躲避障碍"就是一个底层指令,"more primitive kinds of behaviour",更原始行为。

层层分级使得他特别强大

复杂行为由简单行为组成

每个行为都独立,所以能被独立地:被编码 / 检测 / debugged

Higher level behaviours inhibit(抑制) lower levels

Part 4 Subsumption Architecture Examples

1. Steel's Mars Explorer System

2. ToTo

3. Summary

Part 5 Potential Fields and Hybrid architectures

1. Potential Fields 人工势能场


1. Simple fields can be combined to model complex environments

(a. Uniform - guides the robot in a straight line (useful for following a corridor)

(b. Perpendicular - pushes the robot away from linear obstacles( good for modelling large obstacles or walls)

(c. Tangental - guides the robot around an obstacle

(d. Attractive - draws the robot to a point (useful for defining weigh points in a path)

(e. Repulsive - pushes the robot away a point (good for modelling obstacles)

3. Potential Fields 的优缺点
1. Advantages

Easy to visualise
Easy to combine different fields

2. Disadvantages

High update rates necessary
Parameter tuning is important

2. Hybrid Architectures

To build a agents, neithor a completely deliberative nor completely reactive approach is suitable
An obvious approach is to build an agent out of two (or more)
subsystems:

  1. a deliberative one, containing a symbolic world model, which develops plans and
    makes decisions in the way proposed by symbolic AI; and
  2. a reactive one, which is capable of reacting to events without complex reasoning.
相关推荐
爱喝水的鱼丶2 分钟前
SAP-ABAP:掌握BAPI_OUTB_DELIVERY_CONFIRM_DEC:解锁SAP自动化发货的核心钥匙
运维·学习·sap·abap·交流学习
菜菜小狗的学习笔记13 分钟前
黑马程序员java web学习笔记--后端进阶(一)AOP
java·笔记·学习
非凡ghost43 分钟前
ArchiveMaster(文件归档大师)
windows·学习·软件需求
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][clk]clk-bulk
linux·笔记·学习
四谎真好看1 小时前
JavaWeb学习笔记(Day10)
笔记·学习·学习笔记·javaweb
该学习了咕咕1 小时前
单纯实验记录(寿命实验)
学习·学习方法·秀丽线虫·寿命实验
ooo-p1 小时前
FPGA学习篇——Verilog学习之“有限状态机FSM”
学习·fpga开发
A_nanda1 小时前
vue快速学习框架
前端·javascript·vue.js·学习·c#
WTCLLB1 小时前
取消文件隐藏属性,找到winre.wim和boot.sdi
windows·学习
其美杰布-富贵-李1 小时前
门控模型与Mixture of Experts (MOE) 学习笔记
笔记·学习·moe·门控神经网络