【COMP329 LEC 2 Agent and Robot Architectures】

Agent and Robot Architectures

Part 3 Reactive Architectures and the Subsumption Architecture

In these lectures, we look at alternative architectures that better support some classes of agents and robots
• At the end, we then examine how hybrid architectures exploits the best aspects
of deliberative and reactive ones

1. Agent Control Loop as Layers

连续地进行

2. Behaviour based control

并排的进行??

在最后整合到Coordination的过程中,有多种选择的方式,包括:

a. Pick the ``best''

b. Sum the outputs
c. Use a weighted sum

3. Brooks Behavioural Languages

4. Emergent Behaviour

我理解的就是,当一些规则同时进行的时候,可能会产生出一些反应,使得行为变成"程序以外"的结果,比如第二张图片.

synergies:协同,配合。(这里指的是 轻微偏右运动 + 躲避障碍 = 墙体跟随 这个协同)


5. Subsumption Architecture

就是有很多行为指令,但每个行为指令都有优先等级,例如"躲避障碍"就是一个底层指令,"more primitive kinds of behaviour",更原始行为。

层层分级使得他特别强大

复杂行为由简单行为组成

每个行为都独立,所以能被独立地:被编码 / 检测 / debugged

Higher level behaviours inhibit(抑制) lower levels

Part 4 Subsumption Architecture Examples

1. Steel's Mars Explorer System

2. ToTo

3. Summary

Part 5 Potential Fields and Hybrid architectures

1. Potential Fields 人工势能场


1. Simple fields can be combined to model complex environments

(a. Uniform - guides the robot in a straight line (useful for following a corridor)

(b. Perpendicular - pushes the robot away from linear obstacles( good for modelling large obstacles or walls)

(c. Tangental - guides the robot around an obstacle

(d. Attractive - draws the robot to a point (useful for defining weigh points in a path)

(e. Repulsive - pushes the robot away a point (good for modelling obstacles)

3. Potential Fields 的优缺点
1. Advantages

Easy to visualise
Easy to combine different fields

2. Disadvantages

High update rates necessary
Parameter tuning is important

2. Hybrid Architectures

To build a agents, neithor a completely deliberative nor completely reactive approach is suitable
An obvious approach is to build an agent out of two (or more)
subsystems:

  1. a deliberative one, containing a symbolic world model, which develops plans and
    makes decisions in the way proposed by symbolic AI; and
  2. a reactive one, which is capable of reacting to events without complex reasoning.
相关推荐
shenghaide_jiahu12 分钟前
数学分析简明教程——6.4
学习
爱吃泡芙的小白白18 分钟前
Agent学习——路由链
学习·agent·路由链
wdfk_prog42 分钟前
[Linux]学习笔记系列 -- [fs]buffer
linux·笔记·学习
Darken031 小时前
基于C语言的学习---循环
学习·for循环·while循环·do-while循环·循环的嵌套
海奥华21 小时前
进程调度算法 笔记总结
linux·运维·服务器·笔记·学习
Mr.朱鹏3 小时前
大模型入门学习路径(Java开发者版)下
java·python·学习·微服务·langchain·大模型·llm
YJlio4 小时前
ProcessExplorer_17.09_x64-Chs 新版本升级:我看到的区别与优势(含升级思路与注意点)
人工智能·笔记·学习
-木槿昔年-4 小时前
【米尔-安路MYD-YM90X创意秀】飞龙派学习和PS串口实践
学习·fpga开发
车载测试工程师4 小时前
CAPL学习-SOME/IP交互层-符号数据库访问类函数
学习·tcp/ip·以太网·capl·canoe
暗然而日章5 小时前
C++基础:Stanford CS106L学习笔记 13 特殊成员函数(SMFs)
c++·笔记·学习