【COMP329 LEC 2 Agent and Robot Architectures】

Agent and Robot Architectures

Part 3 Reactive Architectures and the Subsumption Architecture

In these lectures, we look at alternative architectures that better support some classes of agents and robots
• At the end, we then examine how hybrid architectures exploits the best aspects
of deliberative and reactive ones

1. Agent Control Loop as Layers

连续地进行

2. Behaviour based control

并排的进行??

在最后整合到Coordination的过程中,有多种选择的方式,包括:

a. Pick the ``best''

b. Sum the outputs
c. Use a weighted sum

3. Brooks Behavioural Languages

4. Emergent Behaviour

我理解的就是,当一些规则同时进行的时候,可能会产生出一些反应,使得行为变成"程序以外"的结果,比如第二张图片.

synergies:协同,配合。(这里指的是 轻微偏右运动 + 躲避障碍 = 墙体跟随 这个协同)


5. Subsumption Architecture

就是有很多行为指令,但每个行为指令都有优先等级,例如"躲避障碍"就是一个底层指令,"more primitive kinds of behaviour",更原始行为。

层层分级使得他特别强大

复杂行为由简单行为组成

每个行为都独立,所以能被独立地:被编码 / 检测 / debugged

Higher level behaviours inhibit(抑制) lower levels

Part 4 Subsumption Architecture Examples

1. Steel's Mars Explorer System

2. ToTo

3. Summary

Part 5 Potential Fields and Hybrid architectures

1. Potential Fields 人工势能场


1. Simple fields can be combined to model complex environments

(a. Uniform - guides the robot in a straight line (useful for following a corridor)

(b. Perpendicular - pushes the robot away from linear obstacles( good for modelling large obstacles or walls)

(c. Tangental - guides the robot around an obstacle

(d. Attractive - draws the robot to a point (useful for defining weigh points in a path)

(e. Repulsive - pushes the robot away a point (good for modelling obstacles)

3. Potential Fields 的优缺点
1. Advantages

Easy to visualise
Easy to combine different fields

2. Disadvantages

High update rates necessary
Parameter tuning is important

2. Hybrid Architectures

To build a agents, neithor a completely deliberative nor completely reactive approach is suitable
An obvious approach is to build an agent out of two (or more)
subsystems:

  1. a deliberative one, containing a symbolic world model, which develops plans and
    makes decisions in the way proposed by symbolic AI; and
  2. a reactive one, which is capable of reacting to events without complex reasoning.
相关推荐
怀旧6661 小时前
spring boot 项目配置https服务
java·spring boot·后端·学习·个人开发·1024程序员节
infiniteWei2 小时前
【Lucene】原理学习路线
学习·搜索引擎·全文检索·lucene
follycat2 小时前
[极客大挑战 2019]PHP 1
开发语言·学习·网络安全·php
并不会6 小时前
常见 CSS 选择器用法
前端·css·学习·html·前端开发·css选择器
龙鸣丿6 小时前
Linux基础学习笔记
linux·笔记·学习
Nu11PointerException8 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
@小博的博客12 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
南宫生12 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步13 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
love_and_hope13 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习