【COMP329 LEC 2 Agent and Robot Architectures】

Agent and Robot Architectures

Part 3 Reactive Architectures and the Subsumption Architecture

In these lectures, we look at alternative architectures that better support some classes of agents and robots
• At the end, we then examine how hybrid architectures exploits the best aspects
of deliberative and reactive ones

1. Agent Control Loop as Layers

连续地进行

2. Behaviour based control

并排的进行??

在最后整合到Coordination的过程中,有多种选择的方式,包括:

a. Pick the ``best''

b. Sum the outputs
c. Use a weighted sum

3. Brooks Behavioural Languages

4. Emergent Behaviour

我理解的就是,当一些规则同时进行的时候,可能会产生出一些反应,使得行为变成"程序以外"的结果,比如第二张图片.

synergies:协同,配合。(这里指的是 轻微偏右运动 + 躲避障碍 = 墙体跟随 这个协同)


5. Subsumption Architecture

就是有很多行为指令,但每个行为指令都有优先等级,例如"躲避障碍"就是一个底层指令,"more primitive kinds of behaviour",更原始行为。

层层分级使得他特别强大

复杂行为由简单行为组成

每个行为都独立,所以能被独立地:被编码 / 检测 / debugged

Higher level behaviours inhibit(抑制) lower levels

Part 4 Subsumption Architecture Examples

1. Steel's Mars Explorer System

2. ToTo

3. Summary

Part 5 Potential Fields and Hybrid architectures

1. Potential Fields 人工势能场


1. Simple fields can be combined to model complex environments

(a. Uniform - guides the robot in a straight line (useful for following a corridor)

(b. Perpendicular - pushes the robot away from linear obstacles( good for modelling large obstacles or walls)

(c. Tangental - guides the robot around an obstacle

(d. Attractive - draws the robot to a point (useful for defining weigh points in a path)

(e. Repulsive - pushes the robot away a point (good for modelling obstacles)

3. Potential Fields 的优缺点
1. Advantages

Easy to visualise
Easy to combine different fields

2. Disadvantages

High update rates necessary
Parameter tuning is important

2. Hybrid Architectures

To build a agents, neithor a completely deliberative nor completely reactive approach is suitable
An obvious approach is to build an agent out of two (or more)
subsystems:

  1. a deliberative one, containing a symbolic world model, which develops plans and
    makes decisions in the way proposed by symbolic AI; and
  2. a reactive one, which is capable of reacting to events without complex reasoning.
相关推荐
三体世界18 小时前
Qt从入门到放弃学习之路(1)
开发语言·c++·git·qt·学习·前端框架·编辑器
hrrrrb19 小时前
【机器学习】无监督学习
人工智能·学习·机器学习
D.....l20 小时前
STM32学习(MCU控制)(DMA and ADC)
stm32·单片机·学习
AI浩20 小时前
自监督 YOLO:利用对比学习实现标签高效的目标检测
学习·yolo·目标检测
黑科技Python1 天前
生活中的“小智慧”——认识算法
学习·算法·生活
Yupureki1 天前
从零开始的C++学习生活 16:C++11新特性全解析
c语言·数据结构·c++·学习·visual studio
青云交1 天前
Java 大视界 -- Java 大数据在智能教育学习社区互动模式创新与用户活跃度提升中的应用(426)
java·大数据·学习·flink 实时计算·智能教育社区·互动模式创新·用户活跃度
武清伯MVP1 天前
阮一峰《TypeScript 教程》学习笔记——类型映射
笔记·学习·typescript
月阳羊1 天前
【论文学习与撰写】Mathtype的安装与word插件安装
学习·word