python的第三方模块pandas模块学习笔记

pandas模块是python的第三方模块

Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析"三剑客之一"的盛名(NumPy、Matplotlib、Pandas)。Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具,本文主要是对pandas进行入门,通过本文你将系统性了解pandas的基本使用方法。

安装

pandas常常和numpy模块一起使用

html 复制代码
pip install numpy
pip install pandas

使用笔记

bash 复制代码
import pandas as pd
import numpy as np
from pandas import DataFrame


# df.T     返回一个转置(行列颠倒的df对象)
# df.reset_index()     重置行索引,默认为0123这种的,旧的行索引保留并且转换为第一列
# df.reset_index(drop=True)     重置行索引,默认为0123这种的,旧的行索引不保留
# df.values     将df对象转换成为numpy数组对象
# np.tolist()     将np对象转换成为二维的列表
# df.columns    返回df对象的列索引对象
# df.index    返回df对象的行索引对象


# dfobj = DataFrame().T.reset_index().values.tolist()



df = pd.DataFrame([('bird', 389.0),
                   ('bird', 24.0),
                   ('mammal', 80.5),
                   ('mammal', np.nan)],
                  index=['falcon', 'parrot', 'lion', 'monkey'],
                  columns=('class', 'max_speed'))

print(df)
#          class  max_speed
# falcon    bird      389.0
# parrot    bird       24.0
# lion    mammal       80.5
# monkey  mammal        NaN



df = pd.DataFrame([('bird', 389.0),
                   ('bird', 24.0),
                   ('mammal', 80.5),
                   ('mammal', np.nan)])

print(df)
#         0      1
# 0    bird  389.0
# 1    bird   24.0
# 2  mammal   80.5
# 3  mammal    NaN


print(df.T)
#       0     1       2       3
# 0  bird  bird  mammal  mammal
# 1   389    24    80.5     NaN



print(df.reset_index())
#    index       0      1
# 0      0    bird  389.0
# 1      1    bird   24.0
# 2      2  mammal   80.5
# 3      3  mammal    NaN



print(df.reset_index(drop=True))
#         0      1
# 0    bird  389.0
# 1    bird   24.0
# 2  mammal   80.5
# 3  mammal    NaN


print(df.values)
# [['bird' 389.0]
#  ['bird' 24.0]
#  ['mammal' 80.5]
#  ['mammal' nan]]



print(df.values.tolist())
# [['bird', 389.0], ['bird', 24.0], ['mammal', 80.5], ['mammal', nan]]




print(df.columns)
# RangeIndex(start=0, stop=2, step=1)


print(df.columns.tolist())
# [0, 1]


print(df.index)
# RangeIndex(start=0, stop=4, step=1)


print(df.index.tolist())
# [0, 1, 2, 3]


df = pd.DataFrame([(123, 389.0),
                   (432, 24.0),
                   (34, 80.5),
                   (54, 87)])
print(df / 1000)
#        0       1
# 0  0.123  0.3890
# 1  0.432  0.0240
# 2  0.034  0.0805
# 3  0.054  0.0870
相关推荐
2501_94114585几秒前
虚拟现实与增强现实技术在教育培训与沉浸式学习场景中的创新应用研究
学习·ar·vr
inputA3 分钟前
【LwIP源码学习8】netbuf源码分析
android·c语言·笔记·嵌入式硬件·学习
前进的李工12 分钟前
LeetCode hot100:094 二叉树的中序遍历:从递归到迭代的完整指南
python·算法·leetcode·链表·二叉树
d111111111d30 分钟前
STM32外设学习-I2C(细节)--学习笔记
笔记·stm32·单片机·嵌入式硬件·学习
( ˶˙⚇˙˶ )୨⚑︎34 分钟前
【学习笔记】DiffFNO: Diffusion Fourier Neural Operator
笔记·神经网络·学习
Topplyz40 分钟前
交流耦合同相放大电路、MAX4466音频放大电路功能详解
学习·运算放大器·模电·放大电路·音频放大
ins_lizhiming1 小时前
在华为910B GPU服务器上运行DeepSeek-R1-0528模型
人工智能·pytorch·python·华为
ModestCoder_1 小时前
【学习笔记】Diffusion Policy for Robotics
论文阅读·人工智能·笔记·学习·机器人·强化学习·具身智能
麦麦大数据1 小时前
F049 知识图谱双算法推荐在线学习系统vue+flask+neo4j之BS架构开题论文全源码
学习·算法·知识图谱·推荐算法·开题报告·学习系统·计算机毕业设计展示
bwz999@88.com1 小时前
win10安装miniforge+mamba替代miniconda
python