记一个JSON返回数据的bug

记一个JSON返回数据的bug:'Object of type int64 is not JSON serializable'

我在打包数组进行json数据返回时,有一个参数是numpy数组里计算出来的,类型为int64,直接进行json打包会报错

提示('Object of type int64 is not JSON serializable',)

,查阅了一些资料,这是因为 JSON 标准规定只支持有限的数据类型,而 int64 不是其中之一。

然后我又搜了一下,python的数据类型,int64和int有什么区别,int64在 什么情况下会出现,得到如下答案:

在 Python 中,int 是整数的基本数据类型,而 int64 是 numpy 库中的数据类型,用于表示 64 位整数。

int 是 Python 内置的整数类型,它可以表示任意大小的整数。在大多数情况下,我们使用的整数都是 int 类型。

而 int64 是 numpy 库中的数据类型,用于处理需要精确表示 64 位整数的情况。int64 类型的整数范围更大,可以表示更大的整数值,而不会溢出。

通常情况下,我们不会直接使用 int64 类型,除非需要处理大整数或者需要与 numpy 库进行交互时。在一些科学计算和数据分析的场景中,numpy 库常常会使用 int64 类型来表示整数数据。

需要注意的是,Python 的内置整数类型 int 在大多数情况下可以满足我们的需求,而且更常见和易于使用。只有在特定的情况下,比如需要处理大整数或者与 numpy 库进行交互时,才需要使用 int64 类型。

后来我把那段代码进行格式转化,转换成float类型,才没有报这个错误了

下面附上代码片段:

python 复制代码
                    for dimension in dimension_list:
                        element_df = result.loc[result['dimension'] == dimension].reset_index(drop=True)
                        dimension_dict = {}
                        dimension_dict['dimension'] = dimension
                        dimension_dict['JS'] = element_df['js_sum'].loc[0]
                        dimension_dict['EP'] = element_df['ep_sum'].loc[0]
                        dimension_dict['element'] = element_df[['elements', 'surprise', 'EP']].reset_index(drop=True).to_dict(orient='records')
                        result_list.append(dimension_dict)
                    json_str["rcode"] = 0
                    json_str["desc"] = "定位根因success"
                    json_str["dimension"] = result_list

修改后的:

python 复制代码
                    for dimension in dimension_list:
                        element_df = result.loc[result['dimension'] == dimension].reset_index(drop=True)
                        dimension_dict = {}
                        dimension_dict['dimension'] = dimension
                        dimension_dict['JS'] = float(element_df['js_sum'].loc[0])
                        dimension_dict['EP'] = float(element_df['ep_sum'].loc[0])
                        dimension_dict['element'] = element_df[['elements', 'surprise', 'EP']].reset_index(drop=True).to_dict(orient='records')
                        result_list.append(dimension_dict)
                    json_str["rcode"] = 0
                    json_str["desc"] = "定位根因success"
                    json_str["dimension"] = result_list
相关推荐
韩曙亮20 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
喵叔哟1 小时前
6.配置管理详解
后端·python·flask
曾经的三心草1 小时前
基于正倒排索引的Java文档搜索引擎3-实现Index类-实现搜索模块-实现DocSearcher类
java·python·搜索引擎
闲人编程2 小时前
Django微服务架构:单体应用拆分解耦实践
微服务·架构·消息队列·django·api·通信·codecapsule
MOMO陌染2 小时前
Python 饼图入门:3 行代码展示数据占比
后端·python
vvoennvv2 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
闲人编程2 小时前
Django缓存策略:Redis、Memcached与数据库缓存对比
数据库·redis·缓存·django·memcached·codecapsule
自学互联网3 小时前
使用Python构建钢铁行业生产监控系统:从理论到实践
开发语言·python
无心水3 小时前
【Python实战进阶】7、Python条件与循环实战详解:从基础语法到高级技巧
android·java·python·python列表推导式·python条件语句·python循环语句·python实战案例
Jay Kay3 小时前
Event loop is closed when AsyncClient exists in multiple event_loops.
bug