记一个JSON返回数据的bug

记一个JSON返回数据的bug:'Object of type int64 is not JSON serializable'

我在打包数组进行json数据返回时,有一个参数是numpy数组里计算出来的,类型为int64,直接进行json打包会报错

提示('Object of type int64 is not JSON serializable',)

,查阅了一些资料,这是因为 JSON 标准规定只支持有限的数据类型,而 int64 不是其中之一。

然后我又搜了一下,python的数据类型,int64和int有什么区别,int64在 什么情况下会出现,得到如下答案:

在 Python 中,int 是整数的基本数据类型,而 int64 是 numpy 库中的数据类型,用于表示 64 位整数。

int 是 Python 内置的整数类型,它可以表示任意大小的整数。在大多数情况下,我们使用的整数都是 int 类型。

而 int64 是 numpy 库中的数据类型,用于处理需要精确表示 64 位整数的情况。int64 类型的整数范围更大,可以表示更大的整数值,而不会溢出。

通常情况下,我们不会直接使用 int64 类型,除非需要处理大整数或者需要与 numpy 库进行交互时。在一些科学计算和数据分析的场景中,numpy 库常常会使用 int64 类型来表示整数数据。

需要注意的是,Python 的内置整数类型 int 在大多数情况下可以满足我们的需求,而且更常见和易于使用。只有在特定的情况下,比如需要处理大整数或者与 numpy 库进行交互时,才需要使用 int64 类型。

后来我把那段代码进行格式转化,转换成float类型,才没有报这个错误了

下面附上代码片段:

python 复制代码
                    for dimension in dimension_list:
                        element_df = result.loc[result['dimension'] == dimension].reset_index(drop=True)
                        dimension_dict = {}
                        dimension_dict['dimension'] = dimension
                        dimension_dict['JS'] = element_df['js_sum'].loc[0]
                        dimension_dict['EP'] = element_df['ep_sum'].loc[0]
                        dimension_dict['element'] = element_df[['elements', 'surprise', 'EP']].reset_index(drop=True).to_dict(orient='records')
                        result_list.append(dimension_dict)
                    json_str["rcode"] = 0
                    json_str["desc"] = "定位根因success"
                    json_str["dimension"] = result_list

修改后的:

python 复制代码
                    for dimension in dimension_list:
                        element_df = result.loc[result['dimension'] == dimension].reset_index(drop=True)
                        dimension_dict = {}
                        dimension_dict['dimension'] = dimension
                        dimension_dict['JS'] = float(element_df['js_sum'].loc[0])
                        dimension_dict['EP'] = float(element_df['ep_sum'].loc[0])
                        dimension_dict['element'] = element_df[['elements', 'surprise', 'EP']].reset_index(drop=True).to_dict(orient='records')
                        result_list.append(dimension_dict)
                    json_str["rcode"] = 0
                    json_str["desc"] = "定位根因success"
                    json_str["dimension"] = result_list
相关推荐
满怀101514 分钟前
Python入门(5):异常处理
开发语言·python
莓事哒15 分钟前
使用pytesseract和Cookie登录古诗文网~(python爬虫)
爬虫·python·pycharm·cookie·pytessarct
赵钰老师19 分钟前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
独好紫罗兰42 分钟前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
freejackman1 小时前
Selenium框架——Web自动化测试
python·selenium·测试
独好紫罗兰1 小时前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法
这里有鱼汤1 小时前
做量化没有实时数据怎么行?我找到一个超级好用的Python库,速度还贼快!
前端·后端·python
Aerkui1 小时前
Python数据类型-int
开发语言·python
吉均1 小时前
如何实现局域网内无痛访问Jupyter Notebook?
ide·python·jupyter
winfredzhang1 小时前
Python视频标签工具详解:基于wxPython和FFmpeg的实现
python·ffmpeg·音视频·视频标签