钢铁异常分类140篇Trans 学习笔记 小陈读paper

钢铁异常分类 对比学习 比较好用

1.首先,为每个实例生成一对样本,

来自同一实例的样本被认为是正例,

来自不同实例的样本被认为是负例。

2.其次,这些样本被馈送到编码器以获得嵌入。

3.在对比损失[16]的影响下,

提取正样本的嵌入以最大化它们的相似性,

而负样本的嵌入被推开以最大化它们的差异。

但有两个障碍阻碍了其在钢表面缺陷图像的有效应用。

存在两个问题

1.首先,对比学习中的固定对比度强度不适合钢表面缺陷样本的表示学习。

2.在 对比下,有利于钢表面缺陷类间相似样本的表示学习,

不利于钢 表面缺陷类内相似样本[见图1(a)]。

弱对比度与强对比度相反[见图1(b)]。

这两个极端对比强度会破坏缺陷样本的潜在语义信息,从而降低学习表示的质量

2.钢表面缺陷的未标记数据不足,

与ImageNet[18]不同的是,ImageNet[18]可以为对比学习提供大量的未标记数据来学习更好的表示。

针对上述问题,给出解决方案

1.在 FiCo 中,设计了可变温度判别来灵活调整钢缺陷样品之间的对比度强度。

还设计了**特征重建(FR)**来 进一步调整对比度强度。

然而,GAN依赖于大量的训练数据 ,由于钢表面缺陷数据不足,容易出现模式崩溃[20]。

什么是 模式奔溃Mode collapse 模式崩溃是指生成器只复制图像,这对对比学习无效。

2.为了缓解钢表面缺陷数据有限的模式崩溃,提出了DGAN。

在 DGAN 中,多个生成器的权重用于生成不同的图像,为 FiCo 提供更多缺陷数据。

contribution

  1. 提出了一种新的对比学习框架FDCL,以克服现有的对比学习的两个障碍,不能有效地应用于钢表面缺陷图像:**对比度不合适,未标记数据不足。**它可以准确识别标记样本较少的钢表面缺陷。
  2. iCo被提出用于钢表面缺陷图像的表示学习。与对比度强度固定的对比学习不同,FiCo使用设计的可变温度判别和FR灵活调整对比度强度,提高学习表示的质量。
  3. 提出了一种名为 DGAN 的生成方法来补充未标记的数据。DGAN使用多个生成器权重来减轻模式崩溃并为 FiCo 生成不同的图像,进一步提高了学习表示的质量。
  4. 在四个标准钢表面缺陷数据集上进行了广泛的实验,以验证所提方法的有效性。实验结果表明,与最先进的方法相比,该方法有了显着的改进。

下面给出论文链接,可以看看方法部分

Steel Defect Detection Based on Modified RetinaNet | IEEE Conference Publication | IEEE Xplore

相关推荐
摸鱼的老谭43 分钟前
Java学习之旅第二季-13:方法重写
java·学习·方法重写
不会调制解调的猫1 小时前
笔记 | 内网服务器通过wifi穿透,设置流量走向
运维·服务器·笔记
程序员大雄学编程2 小时前
「机器学习笔记7」决策树学习:从理论到实践的全面解析(上)
笔记·决策树·机器学习
larry_dongy2 小时前
【学习记录】vscode+ros2+cpp调试
vscode·学习
递归不收敛3 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.5 决策树与集成学习
pytorch·学习·机器学习
菜鸟‍3 小时前
【论文学习】2025年图像处理顶会论文
图像处理·人工智能·学习
Logintern093 小时前
【学习篇】Redis 分布式锁
redis·分布式·学习
聪明的笨猪猪3 小时前
Java Spring “Bean” 面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
A9better3 小时前
嵌入式开发学习日志38——stm32之看门狗
stm32·嵌入式硬件·学习
bnsarocket4 小时前
Verilog和FPGA的自学笔记3——仿真文件Testbench的编写
笔记·fpga开发·verilog·自学