SGPT: GPT Sentence Embeddings for Semantic Search

简介

语义搜索分为两个部分:

1.搜索和query 相关的topk文档。

2.理解文档和query后面隐藏的语义信息,而不是字面含义。

这篇论文提出了SGPT模型,只用decoder-only的transformer来进行语义搜索和sentence向量的提取。

1.SGPT-BE:来对文档和query进行粗略的相关度计算,由于可以对文档的向量进行缓存,所以计算量和文档的数量线性相关,SGPT使用了BitFit的方式只对模型bias等少部分参数进行微调,大部分模型参数在微调的过程中是被冻结的,所以能够大大提升模型的训练效率。

2.SGPT-CE:对文档和query进行concat拼接,拼接后输入到gpt模型中去,对模型输出的query token的概率进行sum pooling的方式,作为文档的得分。由于CE的方式每一个query都需要重复计算很多次,所以计算量比较大,所以一般是在BE之后,对top的文档进行encoder概率计算。

SGPT Cross-Encoder


SGPT Bi-Encoder

相关推荐
ai产品老杨5 分钟前
部署神经网络时计算图的优化方法
人工智能·深度学习·神经网络·安全·机器学习·开源
fanxbl9577 分钟前
深入探索离散 Hopfield 神经网络
人工智能·神经网络
TaoYuan__20 分钟前
深度学习概览
人工智能·深度学习
云起无垠25 分钟前
第74期 | GPTSecurity周报
人工智能·安全·网络安全
workflower35 分钟前
AI+自动驾驶
人工智能·机器学习·自动驾驶
爱技术的小伙子1 小时前
【ChatGPT】 让ChatGPT模拟客户服务对话与应答策略
人工智能·chatgpt
Matrix701 小时前
HBase理论_HBase架构组件介绍
大数据·数据库·hbase
OptimaAI1 小时前
【 LLM论文日更|检索增强:大型语言模型是强大的零样本检索器 】
人工智能·深度学习·语言模型·自然语言处理·nlp
谢眠1 小时前
机器学习day4-朴素贝叶斯分类和决策树
人工智能·机器学习
HelpHelp同学1 小时前
教育机构内部知识库:教学资源的集中管理与优化
人工智能·知识库软件·搭建知识库·知识管理工具