FGSM快速梯度符号法非定向攻击代码(PyTorch)

数据集:手写字体识别MNIST

模型:LeNet

import torch.nn as nn
import torch.nn.functional as F
import torch
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
use_cuda = True
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")


# LeNet 模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)  # 防止过拟合,实现时必须标明training的状态为self.training
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


test_loader = torch.utils.data.DataLoader(#导入数据
    datasets.MNIST('data', train=False, download=True, transform=transforms.Compose([
            transforms.ToTensor(),
            ])),
        batch_size=1, shuffle=True)


model = Net().to(device)
pretrained_model = "lenet_mnist_model.pth"
model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))
model.eval()


def fgsm_attack(image, epsilon, data_grad):  # 此函数的功能是进行fgsm攻击,需要输入三个变量,干净的图片,扰动量和输入图片梯度
    sign_data_grad = data_grad.sign()  # 梯度符号
    # print(sign_data_grad)
    perturbed_image = image+epsilon*sign_data_grad  # 公式
    perturbed_image = torch.clamp(perturbed_image, 0, 1)  # 为了保持图像的原始范围,将受干扰的图像裁剪到一定的范围【0,1】
    return perturbed_image


epsilons = [0, .05, .1, .15, .2, .25, .3]


def test(model, device, test_loader, epsilon):
    correct = 0
    adv_examples = []
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)
        data.requires_grad = True
        output = model(data)
        init_pred = output.max(1, keepdim=True)[1]  # 选取最大的类别概率
        loss = F.nll_loss(output, target)
        model.zero_grad()
        loss.backward()
        data_grad = data.grad.data
        perturbed_data = fgsm_attack(data, epsilon, data_grad)
        output = model(perturbed_data)
        final_pred = output.max(1, keepdim=True)[1]
        if final_pred.item() == target.item():  # 判断类别是否相等
            correct += 1
        if len(adv_examples) < 6:
            adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
            adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))

    final_acc = correct / float(len(test_loader))  # 算正确率
    print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))
    return final_acc, adv_examples


accuracies = []
examples = []

# Run test for each epsilon
for eps in epsilons:
    acc, ex = test(model, device, test_loader, eps)
    accuracies.append(acc)
    examples.append(ex)

plt.plot(epsilons, accuracies)
plt.show()

cnt = 0
plt.figure(figsize=(8, 10))
for i in range(len(epsilons)):
    for j in range(len(examples[i])):
        cnt += 1
        plt.subplot(len(epsilons), len(examples[0]), cnt)
        plt.xticks([], [])
        plt.yticks([], [])
        if j == 0:
            plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
        orig, adv, ex = examples[i][j]
        plt.title("{} -> {}".format(orig, adv))
        plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()
相关推荐
陈鋆13 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot13 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323714 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323715 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker27 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客33 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf233 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li42 分钟前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟1 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人1 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化