数据分析、数据挖掘常用的数据清洗方法

数据清洗目的:一是为了解决数据质量问题;二是为了使数据更适合模型分析挖掘。

数据的完整性---例如:人的属性中缺少性别

数据的唯一性---例如:不同来源的数据出现重复

数据的权威性---例如:同一个指标出现多个来源的数据且数值不同

数据的合法性---例如:获取的数据与常识不符,年龄大于200岁

数据的一致性---例如:不同来源的不同指标,实际内涵是一样的,或同一指标内涵不一致

一、数据质量问题

数据清洗的结果是对各种脏数据进行对应方式处理,得到标准的、干净的、连续的数据提供给模型训练。

1、解决数据完整性

数据缺失,填补数据就好了。

(1)通过其他数据信息补全,例如使用身份证号码推算性别、出生日期、年龄等

(2)通过前后数据补全,例如时间序列缺数据,可以使用前后的均值,缺的多了,可以使用平滑等处理

(3)实在补不全,虽然可惜,但是必须要剔除,但是不要删除,也许以后可以用的上

2、解决数据唯一性

去除重复值,保留一条

(1)按主键去重

(2)按规则去重,如:保留第一次出现,或保留最后一次出现的

3、解决数据权威性

用最权威的渠道数据

对不同渠道设定权威级别

4、解决数据合法性

(1)设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除

(2)离群值人工特殊处理,使用分箱、聚类、回归等方式发现离群值

5、解决数据一致性

建立数据体系

二、数据更适合分析挖掘

1、高维度 --不适合------降维(主成分、随机森林)

2、维度太低--不适合 ---(各种汇总、平均、加总、最大、最小等;各种离散化,聚类、自定义分组)

3、无关信息--减少存储---(删除字段)

4、字段冗余 -- 相关系数很高 --(删除)

5、多指标数值、单位不同 ----(归一化

相关推荐
百***480718 分钟前
Python使用PyMySQL操作MySQL完整指南
数据库·python·mysql
PNP Robotics36 分钟前
PNP机器人上海宝山智能机器人年会发表机器人10年主题演讲演讲
人工智能·python·机器人
沫儿笙37 分钟前
abb焊接机器人保护气体省气设备
人工智能·机器人
机器人行业研究员37 分钟前
轮足之争外,六维力传感器才是机器人的隐形核心
人工智能·机器人·人机交互·六维力传感器·关节力传感器
+wacyltd大模型备案算法备案39 分钟前
模型备案服务从业者,专业讲解:大模型备案(生成式人工智能)
人工智能
___波子 Pro Max.1 小时前
Python获取当前脚本目录路径
python
努力成为大牛吧1 小时前
Pycharm 接入 Deepseek API完整版教程
ide·python·pycharm
闲人编程1 小时前
Python对象模型:一切都是对象的设计哲学
开发语言·python·模型·对象·codecapsule·下划线
搬砖者(视觉算法工程师)1 小时前
人工智能(AI)的工程原理与应用
人工智能
二川bro1 小时前
Python大语言模型调优:LLM微调完整实践指南
开发语言·python·语言模型