数据分析、数据挖掘常用的数据清洗方法

数据清洗目的:一是为了解决数据质量问题;二是为了使数据更适合模型分析挖掘。

数据的完整性---例如:人的属性中缺少性别

数据的唯一性---例如:不同来源的数据出现重复

数据的权威性---例如:同一个指标出现多个来源的数据且数值不同

数据的合法性---例如:获取的数据与常识不符,年龄大于200岁

数据的一致性---例如:不同来源的不同指标,实际内涵是一样的,或同一指标内涵不一致

一、数据质量问题

数据清洗的结果是对各种脏数据进行对应方式处理,得到标准的、干净的、连续的数据提供给模型训练。

1、解决数据完整性

数据缺失,填补数据就好了。

(1)通过其他数据信息补全,例如使用身份证号码推算性别、出生日期、年龄等

(2)通过前后数据补全,例如时间序列缺数据,可以使用前后的均值,缺的多了,可以使用平滑等处理

(3)实在补不全,虽然可惜,但是必须要剔除,但是不要删除,也许以后可以用的上

2、解决数据唯一性

去除重复值,保留一条

(1)按主键去重

(2)按规则去重,如:保留第一次出现,或保留最后一次出现的

3、解决数据权威性

用最权威的渠道数据

对不同渠道设定权威级别

4、解决数据合法性

(1)设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除

(2)离群值人工特殊处理,使用分箱、聚类、回归等方式发现离群值

5、解决数据一致性

建立数据体系

二、数据更适合分析挖掘

1、高维度 --不适合------降维(主成分、随机森林)

2、维度太低--不适合 ---(各种汇总、平均、加总、最大、最小等;各种离散化,聚类、自定义分组)

3、无关信息--减少存储---(删除字段)

4、字段冗余 -- 相关系数很高 --(删除)

5、多指标数值、单位不同 ----(归一化

相关推荐
V1ncent_xuan20 小时前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉
咚咚王者20 小时前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
StarChainTech20 小时前
电动车租赁中的智能管理:电子围栏技术如何改变出行行业
大数据·人工智能·微信小程序·小程序·团队开发·软件需求·共享经济
阿达_优阅达20 小时前
HubSpot 营销指南 | AI 时代,如何同时做好 SEO 与 AEO?
人工智能·ai·seo·营销自动化·hubspot·aeo·sales
趣知岛21 小时前
智能家居与物联网项目实战全指南:从架构设计到落地部署
python·物联网·智能家居
龘龍龙21 小时前
Python基础(八)
开发语言·python
kkce21 小时前
vsping 推出海外检测节点的核心目的
大数据·网络·人工智能
bin915321 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具
人工智能技术咨询.21 小时前
深度学习—卷积神经网络
人工智能