数据分析、数据挖掘常用的数据清洗方法

数据清洗目的:一是为了解决数据质量问题;二是为了使数据更适合模型分析挖掘。

数据的完整性---例如:人的属性中缺少性别

数据的唯一性---例如:不同来源的数据出现重复

数据的权威性---例如:同一个指标出现多个来源的数据且数值不同

数据的合法性---例如:获取的数据与常识不符,年龄大于200岁

数据的一致性---例如:不同来源的不同指标,实际内涵是一样的,或同一指标内涵不一致

一、数据质量问题

数据清洗的结果是对各种脏数据进行对应方式处理,得到标准的、干净的、连续的数据提供给模型训练。

1、解决数据完整性

数据缺失,填补数据就好了。

(1)通过其他数据信息补全,例如使用身份证号码推算性别、出生日期、年龄等

(2)通过前后数据补全,例如时间序列缺数据,可以使用前后的均值,缺的多了,可以使用平滑等处理

(3)实在补不全,虽然可惜,但是必须要剔除,但是不要删除,也许以后可以用的上

2、解决数据唯一性

去除重复值,保留一条

(1)按主键去重

(2)按规则去重,如:保留第一次出现,或保留最后一次出现的

3、解决数据权威性

用最权威的渠道数据

对不同渠道设定权威级别

4、解决数据合法性

(1)设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除

(2)离群值人工特殊处理,使用分箱、聚类、回归等方式发现离群值

5、解决数据一致性

建立数据体系

二、数据更适合分析挖掘

1、高维度 --不适合------降维(主成分、随机森林)

2、维度太低--不适合 ---(各种汇总、平均、加总、最大、最小等;各种离散化,聚类、自定义分组)

3、无关信息--减少存储---(删除字段)

4、字段冗余 -- 相关系数很高 --(删除)

5、多指标数值、单位不同 ----(归一化

相关推荐
向上的车轮5 分钟前
机器人未来会发展出自我意识吗?
人工智能·机器人
Elastic 中国社区官方博客7 分钟前
Elasticsearch 9.3 增加 bfloat16 向量 支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
冬奇Lab9 分钟前
一天一个开源项目(第27篇):Awesome AI Coding - 一站式 AI 编程资源导航
人工智能·开源·资讯
Learner__Q22 分钟前
GPT模型入门教程:从原理到实现
python·gpt
夕除26 分钟前
js--21
java·python·算法
A小码哥29 分钟前
Claude 今天发布了 Sonnet 4.6, 深度对比:sonnet vs Opus,如何选择最适合你的模型?
大数据·数据库·人工智能
破晓之翼31 分钟前
关于AI应用开发需要了解专有名词解释和实际作用
大数据·人工智能
城数派31 分钟前
2001-2024年我国乡镇级的逐年植被净初级生产力(NPP)数据(Shp/Excel格式)
大数据·数据分析·excel
予枫的编程笔记34 分钟前
【Docker高级篇】吃透Linux底层:Namespace做隔离,Cgroups控资源,UnionFS搭存储
linux·人工智能·namespace·cgroups·unionfs·linux底层原理·容器核心技术
癫狂的兔子36 分钟前
【Python】【机器学习】逻辑回归
python·机器学习·逻辑回归