【机器学习】随机种子Random Seed介绍(在Python、Pytorch、TensorFlow中的设置代码汇总)

Random seed(随机种子) 是在生成随机数时使用的起始点。它用于控制随机数生成器产生随机数的序列。设置了随机种子后,每次生成的随机数序列将是确定性的,这意味着可以在不同的运行中获得相同的随机数序列,从而使实验可复现。

在机器学习中,确保实验的可复现性是至关重要的,因为它允许其他人重现你的结果并验证你的研究成果。如果不设置随机种子,每次运行程序时生成的随机数都会发生改变,这将导致结果的不可复现性。

在Python中,随机种子是通过random.seed()函数设置的,而在PyTorch中,可以通过设置torch.manual_seed()来实现,在TensorFlow中,使用tf.random.set_seed()设置

下面是两种场景下设置随机种子的示例:

场景1)在普通Python环境中:

python 复制代码
import random

# 设置随机种子
random.seed(123)

# 生成随机数
for _ in range(5):
    print(random.random())

在这个例子中,我们设置了随机种子为 123,然后生成了 5 个随机数。如果你再次运行上面的代码,你会发现每次生成的随机数序列都是相同的。

场景2)在使用PyTorch训练时:

在 PyTorch 中,可以使用 torch.manual_seed() 来设置随机种子。下面是一个具体的使用案例:

python 复制代码
import torch

# 设置随机种子
torch.manual_seed(123)

# 创建一个随机数张量
random_tensor_1 = torch.rand(3, 3)
print("第一次随机数生成结果:")
print(random_tensor_1)

# 再次随机生成,第二次结果和第一次是一样的
random_tensor_2 = torch.rand(3, 3)
random_tensor_2

# 重新设置不的随机种子
torch.manual_seed(456)

# 再次创建一个随机数张量:因为设置了不同的随机数种子,这次生成的结果不和之前两次不同
random_tensor_3 = torch.rand(3, 3)
print("\n第三次随机数生成结果:")
print(random_tensor_3)

其他设置代码汇总:

python 复制代码
import torch
import random
import tensorflow as tf
import numpy as np

# 设置随机种子
seed = 42


np.random.seed(seed)# 设置 NumPy 中的随机种子
random.seed(seed) #设置 Python 标准库中的随机种子,以确保其他 Python 函数中使用的随机数也是可复现的。

tf.random.set_seed(seed) #设置 TensorFlow 中的随机种子

torch.manual_seed(seed)
torch.cuda.manual_seed(seed) #设置 PyTorch 在 CUDA 环境下的随机种子,以确保 CUDA 计算的结果是可复现的。
torch.cuda.manual_seed_all(seed)  # 如果使用多个GPU,此命令将确保所有的 GPU 使用相同的随机种子。
torch.backends.cudnn.deterministic = True # 确保在使用 cuDNN 加速时结果可复现,但可能会降低性能。
torch.backends.cudnn.benchmark = False #禁用 cuDNN 的自动寻找最适合当前配置的高效算法的功能,以确保结果的一致性。
相关推荐
Auc24几秒前
使用scrapy框架爬取微博热搜榜
开发语言·python
QQ_7781329747 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
梦想画家17 分钟前
Python Polars快速入门指南:LazyFrames
python·数据分析·polars
程序猿000001号29 分钟前
使用Python的Seaborn库进行数据可视化
开发语言·python·信息可视化
API快乐传递者39 分钟前
Python爬虫获取淘宝详情接口详细解析
开发语言·爬虫·python
公众号Codewar原创作者41 分钟前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
FL16238631291 小时前
python版本的Selenium的下载及chrome环境搭建和简单使用
chrome·python·selenium
巫师不要去魔法部乱说1 小时前
PyCharm专项训练5 最短路径算法
python·算法·pycharm
Chloe.Zz1 小时前
Python基础知识回顾
python
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习