PKU 概率论+数理统计 期中考复习总结

这里写目录标题

计算条件概率

【作业题】

Suppose that Die-Hardly-Ever battery has an exponential time-to-failure

distribution with a mean of 48 months. At 60 months, the battery is still operating.

  1. What is the probability that this battery is going to die in the next 12 months?
  2. What is the probability that the battery dies in an odd year of its life?
  3. If the battery is operating at 60 months, compute the expected additional months of life.

【重点】条件概率 +无记忆性

即 P ( x > s + t ∣ x > t ) = P ( x > s ) P(x>s+t|x>t)=P(x>s) P(x>s+t∣x>t)=P(x>s)

计算概率(放回与不放回)

Suppose that a man has k keys, one of which will open a door. Compute

the expected number of keys required to open the door for the following two cases:

a. The keys are tried one at a time without replacement.(不放回)

b. The keys are tried one at time with replacement.(放回)

生成随机数算法

【作业题】可能考察是否full period

Uniformity (test of frequency)

检验样本是否服从均匀分布

对前提进行假设
F r e q u e n c y Frequency Frequency
H 0 : R i ′ s U ( 0 , 1 ) H_0:R_i's~U(0,1) H0:Ri′s U(0,1)
H 1 : R i ′ s n o t U ( 0 , 1 ) H_1:R_i's not U(0,1) H1:Ri′snotU(0,1)

在测试前要说明清楚,显著性水平
α = P ( t y p e o n e e r r o r ) = p ( r e j e c t H 0 ∣ H 0 i s t r u e ) \alpha=P(type\ one\ error)=p(reject\ H_0|H_0 is\ true) α=P(type one error)=p(reject H0∣H0is true)

1.Chi-Square test

  • 卡方检验的期望值 E i E_i Ei要求 E i ≥ 5 E_i≥5 Ei≥5【这个是为了确保近似分布是合理的】

检验是否服从 U ( 0 , 1 ) U(0, 1) U(0,1)如下,

  1. 将[0,1]分成k个等长子区间(对应Reminder的Equal probability)
  2. 计算 O j O_j Oj,其为样本数据 R i R_i Ri落在子区间 ( j − 1 k , j k ] (\frac{j-1}{k},\frac{j}{k}] (kj−1,kj]的频次
  3. E j = E ( O j ) = n k E_j=E(O_j)=\frac{n}{k} Ej=E(Oj)=kn观测值在j区间的期望
  4. 计算卡方 X 0 2 = ∑ j = 1 k ( O j − E j ) 2 E j {X_0}^2=\sum_{j=1}^{k}{\frac{(O_j-E_j)^2}{E_j}} X02=∑j=1kEj(Oj−Ej)2
  5. Reject Ho if X 0 2 > X k − 1 , α 2 {X_0}^2>X_{k-1,\alpha}^2 X02>Xk−1,α2

2.Kolmogorov-Sminov test

流程如下,

  1. Rank R ( 1 ) ≤ R ( 2 ) ≤ . . . ≤ R ( N ) R_{(1)}≤R_{(2)}≤...≤R_{(N)} R(1)≤R(2)≤...≤R(N)
  2. compute D + = max ⁡ 1 ≤ i ≤ N { i N − R ( i ) } D^+=\max_{1≤i≤N}\{\frac{i}{N}-R_{(i)}\} D+=1≤i≤Nmax{Ni−R(i)}
    D − = max ⁡ 1 ≤ i ≤ N { R ( i ) − i − 1 N } D^-=\max_{1≤i≤N}\{R_{(i)}-\frac{i-1}{N}\} D−=1≤i≤Nmax{R(i)−Ni−1}
  3. compute D = m a x ( D + , D − ) D=max(D^+, D^-) D=max(D+,D−)
  4. 拒绝 H 0 H_0 H0 if D > D α ( N ) D>D_{\alpha}(N) D>Dα(N)

Independence (test of autocorrelation)

Runs test

Acceptance-rejection method

This method uses an auxiliary function t(x) that is everywhere ≥ the density f(x) of the RV X we want to simulate

接受-拒绝采样,这个方法使用一个辅助函数 t ( x ) t(x) t(x), t ( x ) t(x) t(x)函数满足处处 t ( x ) ≥ f ( x ) t(x)≥f(x) t(x)≥f(x), f ( x ) f(x) f(x)是随机变量X的概率密度函数,X就是我们想要进行模拟的随机变量。

显然,处处 t ( x ) ≥ 0 t(x)≥0 t(x)≥0

引入 t ( x ) t(x) t(x)去求解 c c c

不妨,令 r ( x ) = t ( x ) c r(x)=\frac{t(x)}{c} r(x)=ct(x),其一定为概率密度

我们必须选择 t t t,以此能更轻松的从 r ( x ) r(x) r(x)概率密度函数中采样。

method

  1. 从概率密度r(x)中产生Y
  2. 产生均匀分布U(0, 1)变量U,其独立于Y
  3. 这意味着我们必须使用其他的随机变量
  4. 当 U ≤ f ( Y ) t ( Y ) U≤\frac{f(Y)}{t(Y)} U≤t(Y)f(Y)时,则令 X = Y X=Y X=Y,否则就回到第一步重新产生Y。

例题 Problem 7: Give an algorithm for generating a standard normal random variable X ∼ N(0,1).

(Hint: if we can generate from the absolute value |X|, then by symmetry we can obtain X by independently generating a rv U (for sign) that is ±1 with probability 1/2 and setting X = U|X|.)

方法1:建议函数使用指数分布

(1)前提准备

首先,根据已知分布的概率密度函数f(x),产生服从此分布的样本X

f ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} (-\infty<x<+\infty) f(x)=2π 1e−2x2(−∞<x<+∞)

但根据题目提示,我们仅能产生|X|,不过同理,不妨设随机变量Z, Z = ∣ X ∣ Z=|X| Z=∣X∣,由X的概率密度函数我们可以知道Z的概率密度函数
f Z ( z ) = 2 2 Π e − z 2 2 ( z ≥ 0 ) f_Z(z)=\frac{2}{\sqrt{2Π}}e^{-\frac{z^2}{2}} (z≥0) fZ(z)=2Π 2e−2z2(z≥0)

此时再找一个建议函数(辅助函数),即随机变量Y,其服从指数分布,故我们可得其概率密度函数
f Y ( y ) = λ e − λ y ( y > 0 ) f_Y(y)=\lambda e^{-\lambda y} (y>0) fY(y)=λe−λy(y>0)

(2)我们首先得确定建议函数的参数 λ \lambda λ与Acceptance-rejection method的参数c(在Acceptance-rejection method算法中我们希望c能接近1)

c ∗ g ( x ) ≥ f ( x ) c*g(x)≥f(x) c∗g(x)≥f(x),g(x)为建议函数

c f Y ( u ) f Z ( u ) = c λ e − λ u 2 2 π e − u 2 2 = c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 \frac{cf_Y(u)}{f_Z(u)}=\frac{c\lambda e^{-\lambda u}} {\frac{2}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}}= \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}} fZ(u)cfY(u)=2π 2e−2u2cλe−λu=2cλ2π e21(u−λ)2−2λ2

易得
c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 ≥ c λ 2 π 2 e − λ 2 2 \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}}≥c\frac{\lambda\sqrt{2\pi}}{2}e^{-\frac{\lambda^2}{2}} 2cλ2π e21(u−λ)2−2λ2≥c2λ2π e−2λ2

不妨令 λ = 1 \lambda=1 λ=1, c = 2 2 π e 1 2 c=\frac{2}{\sqrt{2\pi}}e^{\frac{1}{2}} c=2π 2e21

(这么令代入便于计算)

即可以满足 c f Y ( u ) f Z ( u ) ≥ 1 \frac{cf_Y(u)}{f_Z(u)}≥1 fZ(u)cfY(u)≥1

此时确定可以将 f Y ( u ) f_Y(u) fY(u)作为我们的建议函数(辅助函数)
t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)

(课件中使用t(x)代表建议函数,故此用t表示)

(3)由(2)已将建议函数 t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)找好,接下来我们从中进行采样

【第一个是为了得到样本Y】

  • 生成随机变量U1,其服从U(0,1)的均匀分布,从中生成u1,从而获得采样点y
    y = F − 1 ( u 1 ) = − l n ( 1 − u 1 ) y=F^{-1}(u1)=-ln(1-u_1) y=F−1(u1)=−ln(1−u1)(这个可由指数分布的分布函数去进行求逆变换得到)

【第二个是为了得到样本U】

  • 再生成一个随机变量U2,其也服从U(0, 1)的均匀分布,从中得到u2,且随机变量U1和U2相互独立
    if u 1 ≤ f Z ( y ) c f Y ( y ) u1≤\frac{f_Z(y)}{cf_Y(y)} u1≤cfY(y)fZ(y)
    则该采样点可以取到,(接受)Z=y
    否则就拒绝回到(3)的开始重新进行采样。

(4)综上,我们产生了Z,其满足 Z = ∣ X ∣ Z=|X| Z=∣X∣,但我们实际求解的是X

  • 因此,再生成一个随机变量U3,其服从U(0, 1)的均匀分布,从中得到u3,且随机变量U3是独立于U1、U2
    m = { + 1 u3 ≤ 0.5 − 1 u3 > 0.5 m=\begin{cases} +1& \text{u3 ≤ 0.5}\\ -1& \text{u3 > 0.5} \end{cases} m={+1−1u3 ≤ 0.5u3 > 0.5
    故 X = m ∗ Z X=m*Z X=m∗Z即为采样所得服从N(0,1)标准正态分布

方法2:双指数分布生成正态分布

  1. 产生两个相互独立服从参数为1的指数分布的随机变量Y1、Y2
    Y 1 = − l n ( U 1 ) Y1=-ln(U_1) Y1=−ln(U1)
    and Y 2 = − l n ( U 2 ) Y2=-ln(U_2) Y2=−ln(U2)
  2. 当 Y 2 ≥ ( Y 1 − 1 ) 2 2 Y_2≥\frac{(Y_1-1)^2}{2} Y2≥2(Y1−1)2时,令 ∣ Z ∣ = Y 1 |Z|=Y_1 ∣Z∣=Y1否则就回到第一步重新进行采样
  3. 生成随机变量U,其服从均匀分布U(0, 1)
    Z = { ∣ Z ∣ U ≤ 0.5 − ∣ Z ∣ U > 0.5 Z=\begin{cases} |Z|& \text{U ≤ 0.5}\\ -|Z|& \text{U > 0.5} \end{cases} Z={∣Z∣−∣Z∣U ≤ 0.5U > 0.5

方法3:

  1. 生成随机变量Y,其服从参数为1的指数分布;生成随机变量U1,并令 Y = − l n ( U 1 ) Y=-ln(U1) Y=−ln(U1)
  2. 生成随机变量U2
  3. 若 U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2≤e−2(Y−1)2则令|Z|=Y,否则则回到第一步
  4. 生成U3,若U3≤0.5则Z=|Z|;若U3>0.5,则Z=-|Z|

注意第3步, U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2≤e−2(Y−1)2,可得
− l n ( U 2 ) ≥ ( Y − 1 ) 2 / 2 -ln(U2)≥(Y-1)^2/2 −ln(U2)≥(Y−1)2/2

就可以简化 − l n ( U 2 ) -ln(U2) −ln(U2)是服从参数为1的指数分布。

使用Acceptance-Rejection method对连续型随机变量有效,证明处处都有 P ( X ≤ x ) = F X ( x ) P(X≤x)=F_X(x) P(X≤x)=FX(x)

设,事件A为接受事件,由Acceptance-Rejection method可知,当A发生时,可将采样Y去代替X,即X=Y
左边 = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) 左边=P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} 左边=P(X≤x)=P(Y≤x∣A)=P(A)P(Y≤x,A)

对Y进行采样,得到y,可以取Y作为X的概率如下,
P ( A ∣ Y = y ) = P ( U ≤ f ( y ) t ( y ) ) = f ( y ) t ( y ) P(A|Y=y)=P(U≤\frac{f(y)}{t(y)})=\frac{f(y)}{t(y)} P(A∣Y=y)=P(U≤t(y)f(y))=t(y)f(y)

t(y)为建议分布的概率密度函数

U服从U(0, 1)的均匀分布,故概率如上。

则 0 ≤ f ( y ) t ( y ) ≤ 1 0≤\frac{f(y)}{t(y)}≤1 0≤t(y)f(y)≤1

即 f ( y ) ≤ t ( y ) f(y)≤t(y) f(y)≤t(y)

取r(y)为Y的概率密度函数
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy P(A and Y≤x)=∫−∞xP(A and Y≤x∣Y=y)r(y)dy

由区间知Y≤x必然成立,故
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y = ∫ − ∞ x P ( A ∣ Y = y ) r ( y ) d y = ∫ − ∞ x f ( y ) t ( y ) ∗ t ( y ) c d y = 1 c ∫ − ∞ x f ( y ) d y = 1 c F ( x ) P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy\\= \int_{-\infty}^xP(A|Y=y)r(y)dy\\ =\int_{-\infty}^x\frac{f(y)}{t(y)}*\frac{t(y)}{c}dy\\ =\frac{1}{c}\int_{-\infty}^xf(y)dy\\ =\frac{1}{c}F(x) P(A and Y≤x)=∫−∞xP(A and Y≤x∣Y=y)r(y)dy=∫−∞xP(A∣Y=y)r(y)dy=∫−∞xt(y)f(y)∗ct(y)dy=c1∫−∞xf(y)dy=c1F(x)

又因为 P ( A ) = ∫ R P ( A ∣ Y = y ) r ( y ) d y = 1 c ∫ R f ( y ) d y = 1 c P(A)=\int_R P(A|Y=y)r(y)dy\\ =\frac{1}{c}\int_R f(y)dy=\frac{1}{c} P(A)=∫RP(A∣Y=y)r(y)dy=c1∫Rf(y)dy=c1即 P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1

已知, = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) =P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} =P(X≤x)=P(Y≤x∣A)=P(A)P(Y≤x,A)

将 P ( A a n d Y ≤ x ) = 1 c F ( x ) P(A\ and\ Y ≤ x)=\frac{1}{c}F(x) P(A and Y≤x)=c1F(x)带入

将 P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1带入

解得, P ( X ≤ x ) = F ( x ) P(X≤x)=F(x) P(X≤x)=F(x),综上得证。

Empirical distribution 经验分布

经验分布是分段线性不是阶梯式

重点:数据是否已经被分组

Ungrouped data

condition

当原始的数据已知且有具体的值的时候

method

这里我们可以使用插值法。

首先我们得到的是一组未经处理的数据,不妨设有n个

然后,根据数值由小到大对其进行排序,

  • 最小的值到 [ 0 , 1 n − 1 ] [0, \frac{1}{n-1}] [0,n−11]
  • 接下来的值放到 [ 1 n − 1 , 2 n − 1 ] [\frac{1}{n-1}, \frac{2}{n-1}] [n−11,n−12]
  • 继续上述类似操作
  • 最大值分配到1上

这样,每个值都会和一个区间相对应

construction method

定义一个连续的、分段线性 的分布函数F

将Xi单调递增排序,Xi表示第i小(Xi就是排序过的数值),此时可以得到F函数如下
{ 0 , if x < X ( 1 ) i − 1 n + 1 + x − X i ( n − 1 ) ( X ( i + 1 ) − X ( i ) ) , if X i ≤ x < X ( i + 1 ) , ∀ i < n − 1 1 , if X ( n ) < x \begin{cases} 0& ,\text{if x\}\\ \frac{i-1}{n+1}+\frac{x-X_i}{(n-1)(X_{(i+1)}-X_{(i)})}& ,\text{if X_i≤x\, \\forall i\}\\ 1& ,\text{if X_{(n)}\} \end{cases} ⎩ ⎨ ⎧0n+1i−1+(n−1)(X(i+1)−X(i))x−Xi1,if x<X(1),if Xi≤x<X(i+1), ∀i<n−1,if X(n)<x

生成U去寻找x


grouped data

condition

我们没有独立的数据样本点的时候,仅知道每组数据间隔中有多少数据,即

  • n j n_j nj个点在区间 [ a j − 1 , a j ] , j = 0 , , , , , k [a_{j-1},a_j],j=0,,,,,k [aj−1,aj],j=0,,,,,k
  • ∑ n j = n \sum n_j=n ∑nj=n
  • 令 G ( a j ) = ( n 1 + . . . + n j ) / n , j ≥ 1 , G ( a 0 ) = 0 G(a_j)=(n_1+...+n_j)/n,j≥1,G(a_0)=0 G(aj)=(n1+...+nj)/n,j≥1,G(a0)=0
  • 分配 a j a_j aj到 [ G ( a j ) , G ( a j + 1 ) ] [G(a_j), G(a_{j+1})] [G(aj),G(aj+1)],剩下的数据也如上处理
    最后将0值分配给任意x<a0即可

construction method

example

How about discrete empirical distribution?

  • Data Are Not Grouped
    对于数值x,定义p(x)为 值为x的数值个数占所有数值个数的比例
  • Only Grouped Data Are Available
    定义一个概率函数,使得一个区间内所有数值的概率之和为该区间数值个数占所有数值个数之比

经验分布的优点与缺点

优点

  1. 使用当前数据
  2. 易于操作

缺点

  1. 无法得到观察值范围外的数据
  2. 看起来不规则

Maximum Likelihood Estimator 最大似然估计

相关推荐
无所谓จุ๊บ25 分钟前
使用ML.NET进行对象检测
机器学习·.net
究极无敌暴龙战神40 分钟前
复习自用2
人工智能·算法·机器学习
晒足以百八十3 小时前
数据挖掘实训:基于CEEMDAN与多种机器学习模型股票预测与时间序列建模
python·机器学习·数据挖掘
晒足以百八十3 小时前
数据挖掘实训:天气数据分析与机器学习模型构建
人工智能·机器学习
湫ccc3 小时前
《机器学习》从入门到实战——决策树
人工智能·决策树·机器学习
正是读书时3 小时前
矩母函数(MGF)
概率论
SCBAiotAigc3 小时前
机器学习无处不在,AI顺势而为,创新未来
人工智能·python·机器学习·模型训练·人工智能发展史·人工智能可以发展的方向
顾漂亮4 小时前
探索深度学习:开启智能新时代
人工智能·深度学习·机器学习
云天徽上10 小时前
【数据可视化-11】全国大学数据可视化分析
人工智能·机器学习·信息可视化·数据挖掘·数据分析