排序算法(python)

排序算法

冒泡排序

一次比较相邻的两个数,每轮之后末尾的数字是确定的。

  • 时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( 1 ) O(1) O(1),稳定。
python 复制代码
def BUB(nums):
	for i in range(len(nums)):
		count = 0
		for j in range(len(nums)-i-1):
			if nums[j] > nums[j+1]:
				nums[j], nums[j+1] = nums[j+1], nums[j]
				count += 1
		# count是为了记录该轮是否有修改的,若没有修改,则说明当前数组已经满足条件,不需要再进行交换了。
		if count == 0:
			break
	return nums

选择排序

选择排序是每轮在剩余的元素中,找到最小的元素交换位置。

  • 时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( 1 ) O(1) O(1),不稳定。
python 复制代码
def selection(nums):
	for i in range(len(nums)-1):
		for j in range(i+1, len(nums)):
			if nums[i] > nums[j]:
				nums[i], nums[j] = nums[j], nums[i]
	return nums

插入排序

插入排序是默认前面的序列是有序的,然后将后面的每个数字依次与前面有序的序列进行比较

  • 时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( 1 ) O(1) O(1),稳定。
python 复制代码
def insertSort(nums):
	for i in range(len(nums)-1):
		for j in range(i+1, 0, -1):
			if nums[j] < nums[j-1]:
				nums[j], nums[j-1] = nums[j-1], nums[j]
			else:
				break
	return nums

希尔排序

希尔排序是对插入排序的优化,它选择了一个增量(len(nums)//2),然后按照这个增量选取等差数列,每轮对每个等差数列进行排序,然后将增量缩小,重复进行排列,直到增量缩小为1。

  • 时间复杂度为 O ( n l o g 2 n ) O(nlog_2^n) O(nlog2n),空间复杂度为 O ( 1 ) O(1) O(1),稳定。
python 复制代码
def xier(nums):
	l = len(nums)
	gap = l//2
	while gap>0:
		for i in range(gap, l):
			temp = nums[i]
			j = i
			# j-gap就相当于等差数列进行排序比较
			while j-gap>0 and temp < nums[j-gap]:
				nums[j] = nums[j-gap]
				j = j-gap
			nums[j]=temp
		gap-=1
	return nums

归并排序

合并两个已经排好序的序列以得到结果。是一个递归的过程。

  • 时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度为 O ( n ) O(n) O(n),稳定。
python 复制代码
# 合并两个有序的数组
def merge_two(s1,s2,s):
	i, j = 0, 0
	while (i+j) < len(s):
		# j==len(s2)时说明s2走完了,或者s1没走完并且s1中该位置是最小的
		if j==len(s2) or (i<len(s1) and s1[i] < s2[j]):
			s[i+j] = s1[i]
			i += 1
		else:
			s[i+j] = s2[j]
			j += 1
def merge(s):
	l = len(s)
	if l<2:
		return
	mid = l//2
	s1 = s[0:mid]
	s2 = s[mid:l]
	merge(s1)
	merge(s2)
	merge_two(s1, s2, s)

快速排序

快速排序需要一个基准元素,以及左右两个指针l,r,首先从右端元素开始与基准元素进行比较,找到比基准元素小的数字,放到左端,然后从左端开始寻找比右端大的元素放到r的位置。一轮之后,基准元素左端都是比基准元素小的,右端都是比基准元素大的。然后再依次遍历基准元素左边和右边的序列。

  • 时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),空间复杂度为 O ( 1 ) O(1) O(1),不稳定。
python 复制代码
def quick_sort(nums, start, end):
	if start >= end:
		return
	pivot = nums[start]
	l, r = start, end
	while l<r:
		while l<r and nums[r] > pivot:
			r-=1
		nums[l] = nums[r]
		while l<r and nums[l] < pivot:
			l+=1
		nums[r] = nums[l]
	nums[l] = pivot
	quick_sort(nums, start, l)
	quick_sort(nums, l+1, end)
相关推荐
栈与堆4 分钟前
LeetCode 19 - 删除链表的倒数第N个节点
java·开发语言·数据结构·python·算法·leetcode·链表
sunfove6 分钟前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
Rui_Freely14 分钟前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉
万行26 分钟前
机器学习&第二章线性回归
人工智能·python·机器学习·线性回归
nervermore99031 分钟前
3.3 Python图形编程
python
zhengfei61131 分钟前
世界各地免费电视频道的 M3U 播放列表。
python
yyy(十一月限定版)32 分钟前
matlab矩阵的操作
算法·matlab·矩阵
努力学算法的蒟蒻1 小时前
day58(1.9)——leetcode面试经典150
算法·leetcode·面试
心静财富之门1 小时前
退出 for 循环,break和continue 语句
开发语言·python
txinyu的博客1 小时前
map和unordered_map的性能对比
开发语言·数据结构·c++·算法·哈希算法·散列表