机器学习(新手入门)-线性回归 #房价预测

题目:给定数据集dataSet,每一行代表一组数据记录,每组数据记录中,第一个值为房屋面积(单位:平方英尺),第二个值为房屋中的房间数,第三个值为房价(单位:千美元),试用梯度下降法,构造损失函数,在函数gradientDescent中实现房价price关于房屋面积area和房间数rooms的线性回归,返回值为线性方程𝑝𝑟𝑖𝑐𝑒=𝜃0+𝜃1∗𝑎𝑟𝑒𝑎+𝜃2∗𝑟𝑜𝑜𝑚𝑠中系数𝜃𝑖(𝑖=0,1,2)的列表。

python 复制代码
%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from numpy import genfromtxt
dataPath = r"./Input/data1.csv"
dataSet = pd.read_csv(dataPath,header=None)
print(dataSet)
price = []
rooms = []
area = []
for data in range(0,len(dataSet)):
    area.append(dataSet[0][data])
    rooms.append(dataSet[1][data])
    price.append(dataSet[2][data])
print(area)

执行结果:

python 复制代码
def gradientDescent(rooms, price, area):
    epochs = 500
    alpha = 0.00000001
    theta_gradient = [0,0,0]
    const = [1,1,1,1,1]
    theta = [1,2,1]
    loss = []
    
    for i in range(epochs):
        
        theta0 = np.dot(theta[0],const)
        theta1 = np.dot(theta[1],area)
        theat2 = np.dot(theta[2],rooms) 
        predict_tmp = np.add(theta0,theta1)
        predict = np.add(predict_tmp,theat2) 
        loss_ = predict - price
        theta_gradient[0] = (theta_gradient[0] + np.dot(const,loss_.transpose()))/5
        theta_gradient[1] = (theta_gradient[1] + np.dot(area,loss_.transpose()))/5
        theta_gradient[2] = (theta_gradient[2] + np.dot(rooms,loss_.transpose()))/5
        loss_t = np.sum(np.divide(np.square(loss_),2))/5
        if i%50==0:
            print("loss_t:",loss_t)
        loss.append(loss_t)
        theta[0] = theta[0] - alpha * theta_gradient[0]
        theta[1] = theta[1] - alpha * theta_gradient[1]
        theta[2] = theta[2] - alpha * theta_gradient[2]
    plt.plot(loss,c='b')
    plt.show()
    return theta
python 复制代码
def demo_GD():
    
    theta_list = gradientDescent(rooms, price, area)
demo_GD()

j结果展示:

相关推荐
Landy_Jay14 分钟前
深度学习:基于Qwen复现DeepSeek R1的推理能力
人工智能·深度学习
EterNity_TiMe_19 分钟前
【人工智能】蓝耘智算平台盛大发布DeepSeek满血版:开创AI推理体验新纪元
人工智能·python·机器学习·deepseek
RFID舜识物联网28 分钟前
RFID测温技术:电力设备安全监测的新利器
网络·人工智能·嵌入式硬件·物联网·安全
豪越大豪28 分钟前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
9命怪猫39 分钟前
AI大模型-提示工程学习笔记13—自动提示工程师 (Automatic Prompt Engineer)
人工智能·ai·大模型·prompt
Daitu_Adam1 小时前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
Best_Me072 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
山海青风2 小时前
从零开始玩转TensorFlow:小明的机器学习故事 4
人工智能·机器学习·tensorflow
Shockang2 小时前
机器学习数学通关指南——微分中值定理和积分中值定理
数学·机器学习·微积分