机器学习(新手入门)-线性回归 #房价预测

题目:给定数据集dataSet,每一行代表一组数据记录,每组数据记录中,第一个值为房屋面积(单位:平方英尺),第二个值为房屋中的房间数,第三个值为房价(单位:千美元),试用梯度下降法,构造损失函数,在函数gradientDescent中实现房价price关于房屋面积area和房间数rooms的线性回归,返回值为线性方程𝑝𝑟𝑖𝑐𝑒=𝜃0+𝜃1∗𝑎𝑟𝑒𝑎+𝜃2∗𝑟𝑜𝑜𝑚𝑠中系数𝜃𝑖(𝑖=0,1,2)的列表。

python 复制代码
%matplotlib inline

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from numpy import genfromtxt
dataPath = r"./Input/data1.csv"
dataSet = pd.read_csv(dataPath,header=None)
print(dataSet)
price = []
rooms = []
area = []
for data in range(0,len(dataSet)):
    area.append(dataSet[0][data])
    rooms.append(dataSet[1][data])
    price.append(dataSet[2][data])
print(area)

执行结果:

python 复制代码
def gradientDescent(rooms, price, area):
    epochs = 500
    alpha = 0.00000001
    theta_gradient = [0,0,0]
    const = [1,1,1,1,1]
    theta = [1,2,1]
    loss = []
    
    for i in range(epochs):
        
        theta0 = np.dot(theta[0],const)
        theta1 = np.dot(theta[1],area)
        theat2 = np.dot(theta[2],rooms) 
        predict_tmp = np.add(theta0,theta1)
        predict = np.add(predict_tmp,theat2) 
        loss_ = predict - price
        theta_gradient[0] = (theta_gradient[0] + np.dot(const,loss_.transpose()))/5
        theta_gradient[1] = (theta_gradient[1] + np.dot(area,loss_.transpose()))/5
        theta_gradient[2] = (theta_gradient[2] + np.dot(rooms,loss_.transpose()))/5
        loss_t = np.sum(np.divide(np.square(loss_),2))/5
        if i%50==0:
            print("loss_t:",loss_t)
        loss.append(loss_t)
        theta[0] = theta[0] - alpha * theta_gradient[0]
        theta[1] = theta[1] - alpha * theta_gradient[1]
        theta[2] = theta[2] - alpha * theta_gradient[2]
    plt.plot(loss,c='b')
    plt.show()
    return theta
python 复制代码
def demo_GD():
    
    theta_list = gradientDescent(rooms, price, area)
demo_GD()

j结果展示:

相关推荐
聆风吟º1 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee3 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º4 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys4 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56784 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子4 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144875 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile5 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5775 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert