Gymnasium的基本用法

目录

1.初始化环境

2.与环境交互

3.动作和观测空间

4.修改环境


Gymnasium是一个为所有单智能体强化学习环境提供API的项目,包括常见环境的实现:cartpole、pendulum、mountain-car、mujoco、atari等。

该API包含四个关键功能:make、reset、steprender,下面的基本用法将介绍这些功能。

1.初始化环境

在Gymnasium中可以通过make函数来初始化环境:

python 复制代码
import gymnasium as gym
env = gym.make('CartPole-v1')

Make包含许多附加参数,用于添加包装器、为环境指定关键字等。 如果要查看可以创建的所有环境,可以使用gym .envs.registry.keys(),查看结果如下:

2.与环境交互

下图中的经典"智能体-环境循环"是Gymnasium实现的强化学习的简化表示。

这个循环使用以下代码实现(以车杆环境为例):

python 复制代码
import gymnasium as gym
env = gym.make("CartPole-v1", render_mode="human")
observation, info = env.reset(seed=42)
for _ in range(1000):
   action = env.action_space.sample()  # this is where you would insert your policy
   observation, reward, terminated, truncated, info = env.step(action)

   if terminated or truncated:
      observation, info = env.reset()

env.close()

输出动态效果:

代码解释:

首先,使用make创建一个带有附加关键字"render_mode"的环境,该关键字指定环境应该如何可视化。有关不同渲染模式的默认含义的详细信息,请参阅render

在初始化环境之后,我们重置(reset)环境以获得对环境的第一次观察。要使用特定的随机种子或选项初始化环境,请使用带有reset的seed或options参数。

接下来,智能体在环境中执行一个动作,会导致环境发生变化。因此,智能体从更新的环境中获得新的观察结果,并获得采取行动的奖励。一个这样的动作观察交换被称为时间步长(timestep)。

但是,经过一些时间步长后,环境可能结束,这称为终端状态。在gymnasium中,如果环境已经终止,这一步通过step返回。类似地,我们也可能希望环境在固定数量的时间步长后结束,在这种情况下,环境发出截断的信号。如果terminate或truncated为true,那么接下来应该调用reset来重新启动环境。

3.动作和观测空间

每一个环境通过使用env.action_spaceenv.observation_space属性指定有效动作和观测空间的形式,这有助于了解环境的预期输入和输出,因为所有有效的操作和观察都应该包含在各自的空间中。

4.修改环境

包装器是一种修改现有环境而无需直接修改底层代码的方便方法。使用包装器可以避免大量引用代码,并使环境更加模块化。包装器也可以被链接以组合它们的效果。大多数通过gymnasium.make建立的环境已经通过默认使用TimeLimit,OrderEnforcing和PassiveEnvChecker方法实现了包装。为了去包装一个环境,首先必须初始化环境,然后可以将这个环境连同参数传递给包装器的构造函数:

python 复制代码
import gymnasium as gym
from gymnasium.wrappers import FlattenObservation
env = gym.make("CarRacing-v2")
env.observation_space.shape
###(96, 96, 3)
wrapped_env = FlattenObservation(env)
wrapped_env.observation_space.shape
###(27648,)

Gymnasium已经提供了许多常用的封装器,例如:

如果有一个已包装的环境,并且希望在所有包装器层之下获得未包装的环境(以便可以手动调用函数或更改环境的某些底层方面),则可以使用**.unwrapped属性。如果环境已经是基础环境,.unwrapped**属性将只返回其本身。

python 复制代码
wrapped_env
<FlattenObservation<TimeLimit<OrderEnforcing<PassiveEnvChecker<CarRacing<CarRacing-v2>>>>>>
wrapped_env.unwrapped
<gymnasium.envs.box2d.car_racing.CarRacing object at 0x7f04efcb8850>

相关推荐
通信.萌新25 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家27 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼30 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Bran_Liu30 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
伟贤AI之路32 分钟前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_3077791333 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying5539 分钟前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis1 小时前
如何在 Flask 中实现用户认证?
后端·python·flask