05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P:

execute row exchanges

becomes PA = LU for any invertible A

Permutations P = identity matrix with reordered rows

m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations

对于nxn矩阵存在着n!个置换矩阵

,

2. Transpose:

2.1 Symmetric matrices

对称矩阵

2.2 矩阵乘积的转置

2.3 is always symmetric

why? take transpose

3. 向量空间 Vector spaces

向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

example: = all 2-dim real vectors=x-y plane

first component, second component

= all vectors with 3 components

= all column vectors with m real components

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间

反例 not a vector space:

中的第一象限则不是一个向量空间, 加法数乘不封闭

4. 子空间 Subspaces

a vector space inside , subspace of

line in through zero vector

反例:

中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中

subspaces of :

  1. all of

  2. any line through L(line)

  3. zero vector only z(zero)

subspaces of :

  1. all of

  2. any plane through P(plane)

  3. any line through L(line)

  4. zero vector only z(zero) =

5. 列空间 Column spaces

Columns in : all their combinations from a subspace called column space C(A)

空间内包含两向量的所有线性组合

相关推荐
oscar9992 小时前
线性代数第一章 行列式
线性代数·行列式
在路上看风景2 小时前
2.3 矩阵的零空间
线性代数·矩阵
狂野有理2 小时前
线性代数【第六章:正交性与最小二乘法】
线性代数
simon_skywalker4 小时前
线性代数及其应用习题答案(中文版)第一章 线性代数中的线性方程组 1.4 矩阵方程Ax=b(1)
线性代数·机器学习·矩阵
oscar9995 小时前
线性代数 第二章 矩阵
线性代数·矩阵
懒麻蛇15 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
ChoSeitaku1 天前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus1 天前
矩阵的左乘和右乘有什么区别
线性代数·矩阵
西西弗Sisyphus1 天前
满秩分解是怎么把矩阵分解成了两个满秩的矩阵
线性代数·矩阵·初等矩阵·满秩分解
AI科技星1 天前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法