05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P:

execute row exchanges

becomes PA = LU for any invertible A

Permutations P = identity matrix with reordered rows

m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations

对于nxn矩阵存在着n!个置换矩阵

,

2. Transpose:

2.1 Symmetric matrices

对称矩阵

2.2 矩阵乘积的转置

2.3 is always symmetric

why? take transpose

3. 向量空间 Vector spaces

向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

example: = all 2-dim real vectors=x-y plane

first component, second component

= all vectors with 3 components

= all column vectors with m real components

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间

反例 not a vector space:

中的第一象限则不是一个向量空间, 加法数乘不封闭

4. 子空间 Subspaces

a vector space inside , subspace of

line in through zero vector

反例:

中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中

subspaces of :

  1. all of

  2. any line through L(line)

  3. zero vector only z(zero)

subspaces of :

  1. all of

  2. any plane through P(plane)

  3. any line through L(line)

  4. zero vector only z(zero) =

5. 列空间 Column spaces

Columns in : all their combinations from a subspace called column space C(A)

空间内包含两向量的所有线性组合

相关推荐
索迪迈科技10 小时前
算法题(203):矩阵最小路径和
线性代数·算法·矩阵
Hi202402171 天前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
君名余曰正则2 天前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM2 天前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值
阿巴Jun2 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
scx_link2 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX12 天前
矩阵的对称,反对称分解
线性代数·矩阵
郝学胜-神的一滴2 天前
基于OpenGL封装摄像机类:视图矩阵与透视矩阵的实现
c++·qt·线性代数·矩阵·游戏引擎·图形渲染
十子木3 天前
线性方程求解器的矩阵分裂
线性代数·矩阵
人机与认知实验室4 天前
人机环境系统智能矩阵理论
线性代数·矩阵