回归预测 | MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测

回归预测 | MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测

目录

效果一览








基本介绍

MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测。基于贝叶斯(bayes)优化长短期神经网络的回归预测,BO-LSTM/Bayes-LSTM回归预测预测模型。

1.优化参数为:学习率,隐含层节点,正则化参数。

2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。

3.运行环境matlab2020b及以上。

模型搭建

BO-LSTM(贝叶斯优化LSTM)是一种结合了贝叶斯优化和长短期神经网络(LSTM)的方法。

长短期神经网络(LSTM)是循环神经网络(RNN)的一种变体,具有比传统循环神经网络更强大的建模能力。

贝叶斯优化是一种用于优化问题的方法,它能够在未知的目标函数上进行采样,并根据已有的样本调整采样的位置。这种方法可以帮助我们在搜索空间中高效地找到最优解。

BO-LSTM的基本思想是使用贝叶斯优化来自动调整GRU模型的超参数,以获得更好的预测性能。贝叶斯优化算法根据已有的模型性能样本,选择下一个超参数配置进行评估,逐步搜索超参数空间,并利用贝叶斯推断方法更新超参数的概率分布。通过这种方式,BO-LSTM可以在相对较少的模型训练迭代次数内找到更好的超参数配置,从而提高预测的准确性。

  • 伪代码

程序设计

clike 复制代码
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [
    optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];

%% 创建网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % 特征学习       

        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');


% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
    options = trainingOptions( 'adam', ...
        'MaxEpochs',500, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',optVars.InitialLearnRate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',400, ...
        'LearnRateDropFactor',0.2, ...
        'L2Regularization',optVars.L2Regularization,...
        'Verbose',false, ...
        'Plots','none');

%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
liu****26 分钟前
11.Linux进程信号(三)
linux·运维·服务器·数据结构·1024程序员节
阿部多瑞 ABU2 小时前
Unicode全字符集加解密工具 - 命令行交互版:功能完整的终端解决方案
经验分享·交互·ai编程·1024程序员节
知识分享小能手4 小时前
jQuery 入门学习教程,从入门到精通, jQuery在HTML5中的应用(16)
前端·javascript·学习·ui·jquery·html5·1024程序员节
0和1的舞者21 小时前
网络通信的奥秘:HTTP详解 (七)
服务器·网络·网络协议·http·okhttp·软件工程·1024程序员节
liu****1 天前
12.线程(二)
linux·开发语言·c++·1024程序员节
小苏兮1 天前
【把Linux“聊”明白】编译器gcc/g++与调试器gdb/cgdb:从编译原理到高效调试
java·linux·运维·学习·1024程序员节
unable code1 天前
攻防世界-Misc-掀桌子
网络安全·ctf·misc·1024程序员节
被AI抢饭碗的人2 天前
linux:io基础
1024程序员节
GIS数据转换器2 天前
2025无人机在电力交通中的应用实践
运维·人工智能·物联网·安全·无人机·1024程序员节
TDengine (老段)2 天前
TDengine 数学函数 CRC32 用户手册
java·大数据·数据库·sql·时序数据库·tdengine·1024程序员节